
AFIT/GOR/ENS/99M-06

PILOT INVENTORY COMPLEX
ADAPTIVE SYSTEM (PICAS):

AN ARTIFICIAL LIFE APPROACH
TO MANAGING PILOT RETENTION

THESIS

Martin P. Gaupp, Captain, USAF

AFIT/GOR/ENS/99M-06

Approved for public release; distribution unlimited.

^(JMOTBBHWBB)» 19990409 019

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

AFIT/GOR/ENS/99M-06

PILOT INVENTORY COMPLEX ADAPTIVE SYSTEM (PICAS):

AN ARTIFICIAL LIFE APPROACH

TO MANAGING PILOT RETENTION

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Operations Research

Martin P. Gaupp, B.S., M.B.A.

Captain, USAF

March 1999

Approved for public release; distribution unlimited.

AFIT/GOR/ENS/99M-06

PILOT INVENTORY COMPLEX ADAPTIVE SYSTEM (PICAS):
AN ARTIFICIAL LIFE APPROACH

TO MANAGING PILOT RETENTION

THESIS

Martin P. Gaupp, Captain, USAF

Approved:

'Raymond Hill (chairman)
JO MOA. 11

date

GlennBailey/reader) date

n

ACKNOWLEDGEMENTS

This thesis effort would never have even been started without the help of my

faculty advisor, Major Ray Hill. His guidance and patience with me throughout the entire

process made this project truly enjoyable and very enlightening. I would also like to

thank my reader, Lt Col Glenn Bailey, for being there to bounce ideas off of and

encouraging me in completing this effort. My sponsor, Major Craig Willits, was always

there to help too, be it either with finances or knowledge. Thanks to his quick responses

to my questions I never had to experience the data-collection delays that seem to plaque

AFIT theses.

Above all, though, I thank my wife Britta. Her patience over the last 18 months

here at AFIT made this grueling effort that much easier. Without her unwavering love

and support none of this would have been possible or even purposeful. I fear that I take

for granted too often all that she puts up with while I am in school and therefore am for

ever indebted to her.

Lastly I thank God for the opportunity He provided me with here at AFIT. His

blessing upon my life and the work He has allowed me to do here are a true testament to

what faith can do if you only believe.

111

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS iii

LIST OF FIGURES vi

LIST OF TABLES vii

ABSTRACT viii

CHAPTER 1 1

1.1. OVERVIEW OF THE THESIS EFFORT 1
1.1.1. Definition of the Topic and Problem Statement 1
1.1.2. Scope of the Research 2

1.2. FORMAT OF THIS THESIS 3

CHAPTER 2 4

2.1. INTRODUCTION 4
2.2. COMPLEX ADAPTIVE SYSTEMS 6
2.3. CONCEPTUAL MODEL DEVELOPMENT 9

2.3.1. Pilots as Complex Adaptive Agents 9
2.3.2. The Pilots' Environment. 11
2.3.3. Collection of Summary Statistics 11
2.3.4. User Interaction 12

2.4. SIMULATION MODEL DEVELOPMENT IN JAVA 14
2.4.1. Agent Class 14
2.4.2. PilotRetention Class 17
2.4.3. SummaryStats Class 19
2.4.4. Graphical User Interface (GUI) 20

2.5. VERIFICATION AND VALIDATION 24
2.5.1. Verification of the Model. 24
2.5.2. Validation of the Model 25

2.6. ANALYSIS METHODS USING COMPLEX ADAPTIVE SYSTEMS 27
2.6.1. Prescription versus Prediction 27
2.6.2. Exploratory Modeling 29

2.7. MODEL RESULTS 30
2.7.1. Model Results from Various Parameter Settings 30
2.7.2. Response Surface Methodology Results 35
2.7.3. Three Dimensional Graphical Analysis of Results 41

2.8. RESULTS AND CONCLUSIONS 46

IV

CHAPTER3 49

3.1. FURTHER EXTENSIONS OF THIS RESEARCH EFFORT 49
3.2. ADDITIONAL AREAS OF STUDY USING COMPLEX ADAPTIVE SYSTEMS THEORY 50
3.3. CONCLUDING REMARKS 51

APPENDIX A - AN INTRODUCTION TO CHAOS, COMPLEX ADAPTIVE
SYSTEMS THEORY, AND ARTIFICIAL LIFE 53

A.l. CHAOS THEORY 53
A.l.l. The History and Development of Chaos Theory 53
A.1.2. The Tenets of Chaos Theory 58
A. 1.3. The Uses and Applications of Chaos Theory 62

A.2. COMPLEX ADAPTIVE SYSTEMS THEORY 66
A.2.J. The History and Development of Complex Adaptive Systems Theory 66
A.2.2. The Tenets of Complex Adaptive Systems Theory 83
A. 2.3. The Uses and Applications of Complex Adaptive Systems Theory 89
A.2.4. The Use of Exploratory Modeling and Complex Adaptive Systems Models... 91

A.3. ARTIFICIAL LIFE 92
A.3.1. Defining 'Life'. 92
A.3.2. The History and Development of Artificial Life 96
A.3.3. The Uses and Applications of Artificial Life 103

APPENDIX B - JAVA SOURCE CODE Ill

B.l. PILOTRETENTIONCLASS Ill
B.2. AGENT CLASS 117
B.3. SUMMARYSTATS CLASS 123
B.4. ENVIRONMENTALCONTROL CLASS 126
B.5. PILOTCONTROL CLASS 128
B.6. UTILITYCURVECLASS..... 129
B.7. SCROLLBARREADER CLASS 132
B.8. HTML WEB PAGE CODE 136

APPENDIX C - ANNOTATED BIBLIOGRAPHY 137

BIBLIOGRAPHY 146

VITA 148

LIST OF FIGURES

Page

Figure 1: Screen Capture of PICAS Model 20

Figure 2: Utility Curve Example.. 22

Figure 3: Separations at the Minimum Years-Of-Service Point 32

Figure 4: Separations at the Middle Career Point 33

Figure 5: Separations at the End of Career Point 35

Figure 6: Surface Plot of Minimum YOS Point Separators 42

Figure 7: Surface Plot of Middle of Career Separators 44

Figure 8: Surface Plot of End of Career Separators 45

Figure 9: Lorenz Attractor 54

Figure 10: Langton's Continuum of Activity 100

Figure 11: Langton's X Factor 101

VI

LIST OF TABLES

Page

Table 1: Experimental Design for Analysis of Model Results 31

Table 2: Coding Schemes for RSM Analysis 36

Table 3: Normality Test Results For Regression Analysis 37

Table 4: Initial Parameter Results from RSM Analysis 38

Table 5: RSM Results of Statistically Significant Model Effects 39

Vll

ABSTRACT

The retention of skilled pilots continues to be a problem that plagues the United

States Air Force. After spending millions of dollars on training and education, it is

disheartening to see the mass exodus of experienced aviators from the Air Force that has

been occurring in the past decade. Many blame the economy, others the Air Force itself,

but few are able to accurately predict how or why they are all leaving. The current

personnel models do not adequately determine retention rates. Complex adaptive

systems theory, however, might provide some insight. By modeling the system at the

pilot's level, allowing each pilot to be represented as an autonomous, independent agent

continually adapting to its environment and the other agents in it, an alternate model can

be built; one that accounts for the interactions among the pilots, not just their interactions

with their environment. PICAS (Pilot Inventory Complex Adaptive System) is just such

a model. Constructed in the Java language, the PICAS model exploits the notions of

complex adaptive systems theory and employs dynamic user controls to discern retention

rates. Pilots 'evolve', for lack of a better word, to a greater fitness within their

environment, and in the process the model user can better determine what kind of

environment needs to be created and maintained in order to ensure that trained and

experienced pilots are in fact retained for their services. This thesis will discuss the

theory underlying the PICAS model, trace the development of the PICAS model, review

the descriptive results the model produces, and finally investigate the uses of the model

as a tool for exploratory modeling.

viu

PILOT INVENTORY COMPLEX ADAPTIVE SYSTEM

(PICAS): AN ARTIFICIAL LIFE APPROACH

TO MANAGING PILOT RETENTION

CHAPTER 1

1.1. Overview of the Thesis Effort

1.1.1. Definition of the Topic and Problem Statement

During the draw-down of the early 1990's, personnel retention was not a real

issue. The military was interested in reducing its total force levels and losing some

people due to separations was actually advantageous. However, the draw-down is now

over. The military is at a stable force structure, but personnel are still separating at an

alarming rate. Most notably, pilot retention has become a major problem for the Air

Force. After investing millions on their training, the Air Force is finding it increasingly

harder to maintain the necessary pilot personnel levels. Too many pilots are taking their

Air Force gained knowledge and experience and parlaying it into a career in the

commercial sector. The Air Force does not totally understand why so many pilots are

leaving nor how to reverse the trend. Current personnel models adequately predict short-

term inventory levels but really cannot account for the mass exodus occurring and

ultimately are not intended to provide indications on how to solve the problem.

This is where the notion of complex adaptive systems (CAS) theory comes in. By

looking at the pilot retention issue from a complex adaptive systems standpoint, we

model pilots as individual, autonomous, adaptive agents. Essentially, we model pilot

retention from the standpoint of the pilots, incorporating the interactions among the pilots

and their environment to examine the overall system's behavioral response. The

resulting model might then provide us with insights into the issues and motivations

underlying pilot retention. This information can then be used by policy makers to tailor

their decisions in order to minimize the separation of trained pilots early in their Air

Force careers.

1.1.2. Scope of the Research

This research centers around the creation of a complex adaptive systems

simulation model using the Java programming language. Developed as an applet

executable on any Java-enabled web browser, the model consists of a group of simulated

pilots that are treated as autonomous, independently thinking agents. Each pilot is

preprogrammed with a simple set of rules and then set loose to interact with other pilots

in the system (i.e. squadron, wing, or AF-wide) and react to the environment. The pilots' -

interactions with each other and their environment is what leads to some interesting

emergent behavior regarding their tendencies to stay in the Air Force (aka retention) or

their tendencies to leave the Air Force (aka separation).

The prototype model, called PICAS (Pilot Inventory Complex Adaptive System)

is then used in an exploratory analysis role. A designed experiment is run and response

surfaces are generated, suggesting a methodology for insight producing analyses using

CAS-based simulations.

1.2. Format of this Thesis

This thesis is structured in a way to make publication in an academic journal as

simple as possible. Chapter 2 contains all the information regarding the model's

conceptual development and its implementation in the Java language. Chapter 2 also

presents model results and suggests potential uses for the model in real-world

applications. Chapter 3 provides a conclusion and presents areas for further research.

The appendices provide additional background information. Appendix A presents

an in-depth review of chaos theory, complex adaptive systems theory, and artificial life.

Included in each section are the history and development of the theory, the basic tenets of

the theory, and the various real-world applications of the theory. Appendix B provides

the source code of the model developed for this thesis. Appendix C contains an

annotated bibliography of the various sources consulted in researching this thesis.

CHAPTER 2

2.1. Introduction

Life is complex. But, since the dawn of time, humans have tried to eliminate the

complexity in our lives. We concoct assumptions to relax the rigid requirements of a

complicated system. In model building, we eliminate the complex to simplify the

problem and promote understanding. In reality, however, we sacrifice reality for

simplicity. We have models that work, but often they over abstract reality and end up

answering the wrong questions. Such models often reconfirm common knowledge.

According to Casti (1994:4), models are nothing but an applied set of rules. The

problem, he points out, is for too long we have been building our models by taking apart

existing systems and then dictating from the top down how to put them back together

based on the knowledge of their individual parts. We then expect our recreated whole to

be an adequate representation of the real whole we are studying. The problem is, as

Aristotle points out, "The whole is more than the sum of the parts" (quoted in Casti,

1994:171). According to Casti, "if you want to study the behavior of a system composed

of many parts, breaking it apart into its component pieces and studying the pieces

separately won't always help you in understanding the whole" (Casti, 1994:172).

Current personnel models are either regression-based predictive models or entity-

based descriptive models. While sufficient for forecasting and predictive purposes, these

models do not explicitly capture personnel behaviors, especially with regards to the

interactions between personnel. Capturing personnel behavior is simply not within the

scope of current models. To gain analytical insight into personnel behavior trends and

exploit the interactive nature of the actual system, a new generation of models may be

required.

This is where complex adaptive systems (CAS) theory may be able to help.

Instead of modeling from the top-down—the current paradigm—CAS implements

bottom-up modeling. Agents are created in the model and their interactions with each

other and their environment is what drives the system's behavior. Observing the trends

in the systems behavior can then help describe past behavior and lend some insight into

predicting future behavior.

The goal of the PICAS (Pilot Inventory Complex Adaptive System) model is to

create artificial life in the computer to such a degree that the actions of the pilots in the

computer resemble the expected separation actions of real-life Air Force pilots. The

computer's pilots are subjected to environmental conditions in the hope that their

reactions will provide some indication of the behaviors exhibited by real pilots in similar

situations. Controlling conditions and observing behaviors is easier in such a model than

doing so in real-life.

This research is a 'proof-of-concept' effort examining complex adaptive systems

applicability to Air Force modeling. Section 2 overviews CAS theory followed by an

overview of the conceptual model in section 3. Section 4 covers the actual

implementation of the model in the Java programming language and section 5 discusses

verification and validation issues. Analysis methods are described in section 6 and

results are presented in section 7. We then close with a summary and some concluding

remarks.

2.2. Complex Adaptive Systems

To break away from the paradigm of top-down modeling, we enter the science of

complexity and its applications in complex adaptive systems theory. Instead of the top-

down approach so entrenched in contemporary simulation and modeling, complex

adaptive systems theory is based on the notion of model building from the bottom up.

After three hundred years of dissecting everything into
molecules and atoms and nuclei and quarks, they
[scientists] finally seemed to be turning that process inside
out. Instead of looking for the simplest pieces possible,
they were starting to look at how those pieces go together
into complex wholes. (Waldrop, 1992:16)

As the idea of emergence and learning became popular, scientists began to realize that

dissecting a system into its parts was not an adequate way to describe and reproduce its

behavior. There was something inherent in the entire entity that its parts alone could not

describe. There was something hidden in the whole that the parts could not reveal by

themselves. Scientists were discovering that complexity was really more a property of

the interactions between the parts of a system than an intrinsic aspect of the parts

themselves taken in isolation.

Scientists also uncovered the notion that complex behavior seemed to emerge

from these complicated systems. Emergence, it turns out, is something that we humans

have been exposed to for centuries, but have always taken for granted. Holland points

out that:

We are everywhere confronted with emergence in complex
adaptive systems—ant colonies, networks of neurons, the
immune system, the Internet, and the global economy, to
name a few—where the behavior of the whole is much
more complex than the behavior of the parts. (Holland,
1995:2)

Holland goes on to discuss the nature of these emergent systems. He states that:

A small number of rules or laws can generate systems of
surprising complexity. Moreover, this complexity is not
just the complexity of random patterns. Recognizable
features exist... In addition, the systems are animated—
dynamic; they change over time. Though the laws are
invariant, the things they govern change... The rules or
laws generate the complexity, and the ever-changing flux
of patterns that follows leads to perpetual novelty and
emergence. (Holland, 1995:3-4)

Emergent behavior seems to appear out of nowhere. Added to this, the notion of such

behavior existing is not even a consideration among the individual agents that make up

the system. The notion of the emergent behavior is strictly tied to the actions of the entire

system. Once again, the whole is greater than the sum of the parts.

With this in mind, the science of complexity began growing and gaining

notoriety. Members from all over the scientific community, from astronomy to zoology,

were coming together and contributing to the formation of this new science. The Santa

Fe Institute was founded as a private organization chartered with research into the

phenomena of complex adaptive systems. There, scientists from throughout the world

gathered and began to form the new science of complexity.

From the outset, a definition of complexity had to be developed before any real

experimentation or model building could occur. The members of the Santa Fe Institute

went to work to develop the characteristics they felt were necessary to describe a

complex adaptive system. First, it was agreed that complex processes generate

counterintuitive, seemingly acausal behavior which is full of surprises. This alone was a

disturbing fact and one that would require many paradigm shifts in the scientific

community. It was also discovered that complex systems involve lots of interactions

among the entities in the system and feedback plays a big role in the system's overall

behavior. Complex systems also exhibit a marked diffusion of real authority. Contrary

to current systems theory which believed that every system seemed to have a nominal

supreme decision-maker, complex adaptive systems possess a decentralized power

structure spreading authority and decision making ability over a number of units (if not

all the units in the system). System behavior is the combination of the individual

behaviors of the agents acting together. Thus, complex adaptive systems might simulate

life, leading to the notion of exploiting complex adaptive systems theory in the

investigation of artificial life. Lastly, complex adaptive systems are inherently

irreducible. Neglecting any part of the process or severing any of the connections linking

its parts would destroy essential aspects of the system's behavior or structure and render

the system inert. Again, complexity was a property of the entire system, not the

individual parts of the system.

New models arose exploiting the tenets of complex adaptive systems theory.

However, a chief argument arose about the predictive power of such models. Complex

adaptive systems rarely (if ever) followed the same course of action even when all the

inputs were maintained between simulations. This, however, was a very realistic

property that complex adaptive systems engineers were proud of. Life is not predictable;

the same initial circumstances can lead to greatly diverse outcomes. With this in mind,

the creators of models employing complex adaptive systems theory held on to the notion

that models are not just important for their predictive abilities. Their ability to explain

natural phenomena is just as important. Users of complex adaptive systems were

convinced their models might help describe nature, something no other models had been

able to accomplish. Although they may not be able to predict the future state of a system,

they might be able to describe, and re-create, its past. This alone would be a great

accomplishment, for to date not many models had been successful at explaining anything

but the most simple of systems.

Complex adaptive system theory helped develop the notion of artificial life. Levy

says "Artificial life, or a-life, is devoted to the creation and study of lifelike organisms

and systems built by humans" (Levy, 1992:5). Langton adds that:

The ultimate goal of the study of artificial life would be to
create "life" in some other medium, ideally a virtual
medium where the essence of life has been abstracted from
the details of its implementation in any particular model.
We would like to build models that are so life-like that they
cease to become models of life and become examples of
life themselves, (quoted in Levy, 1992:85)

2.3. Conceptual Model Development

2.3.1. Pilots as Complex Adaptive Agents

The pilot inventory problem in the Air Force is extremely complicated. There are

numerous constraints and many different variables that play into the problem. However,

underneath all the details lies the essence of a complex adaptive system. The pilots

themselves are actually agents adapting to better survive in a complex environment.

Capturing the autonomy with which these pilot-agents act within a model requires that

we exploit the tenets of complex adaptive systems theory. Pilots constantly communicate

with each other and influence each other's actions. They take in information from their

environment, process it, and then react to it. They also take in information regarding the

behaviors of other pilots in their vicinity (i.e., squadron-mates) and base their behaviors

on this interactive information. This alone defines the nature of a complex adaptive

system and it is based on this notion that the idea of using a complex adaptive systems

theory to model the pilot inventory issue arose.

The whole purpose of model building is to explain some complicated process in a

simplified manner without sacrificing too much information. Holland points out that a

well constructed model exhibits the complexity and emergent behavior of the system it

models but without all the (often unnecessary) detail involved in the real system

(Holland, 1998:12). A model should simplify the system, but not to the point of loosing

any of the significant information inherent in the system being modeled.

The PICAS model was developed to exploit the complex adaptive systems aspects

of the pilot inventory issue. By setting up a few simple rules by which the agents (pilots)

in the model interact, some very complex and interesting behavior emerges. The

interactions between the agents cause the emergence of complex behavior, behavior that

may very well point out ways to avoid or exploit future scenarios in the personnel

management arena.

Artificial life is also important since the whole goal of the model is to simulate the

life-like behavior of pilots in the Air Force. The agents in the model are constructed in

such a way that their emergent behavior appears life-like—it mimics their counterparts

outside the computer. By altering the computer agent's environment and agent-to-agent

behavior, the users of the model may gain insights into how a real pilot might react under

the same circumstances. In this way, the computer's pilot-agents may be viewed as

simplified examples of real Air Force pilots, although numerous simplifying assumptions

underlie the current prototype PICAS model.

10

2.3.2. The Pilots' Environment

The environment within which the pilots live is represented by the playing field

on the screen. In the real world, the pilots' environment is constantly changing and pilots

are always trying to adjust their behaviors in order to maximize their happiness in their

current environment. A similar idea is used by PICAS. The environment within which

the pilot-agents live is also in a constant state of flux and the agents are continuously

adapting themselves to their new virtual environment.

The goal was to develop an environment capturing the essential information

present in the pilots' real environment. However, due to the computer's ability to process

lots of information in short amounts of time, the computer's environment can be changed

and altered at the whim of the user. This allows the user to investigate the effects of

certain policy decisions without having to wait and see what their effects are in the real

system. By modeling the system this way, the user is in total control of the environment

(something impossible in the real world) and is better able to determine the possible

implications of certain policies and procedures that could be implemented on the real

pilot force. By being under the user's control, the dynamic nature of the model allows

the user to test personnel policy initiatives without risking harm to the real system.

Results are obtained in a fraction of the time and at a significantly reduced price than if

tested on the real system.

2.3.3. Collection of Summary Statistics

Throughout the model's execution, the pilots are animated on the playing field,

dancing about their environment and making decisions regarding their future career

aspirations in the Air Force. Animation, however interesting, does not provide hard

11

quantifiable data for analysis. Animation, though, does provide a means to view the

emergent CAS-like behavior exhibited by the model. It allows the user to gain insight

into personnel trends and conduct exploratory analysis. To provide quantitative data

summary statistics are collected and displayed for the user along the bottom of the screen.

By displaying the percentage of separations at particular times in a pilot's career,

the model provides a graphical depiction of the pilots' decision making process and gives

the user an ability to view the results of the model over the course of its entire execution

run. This information can then be used to guide policy makers and help them determine

the best course of action to pursue for the pilot inventory as a whole.

The collection of summary statistics also provides a means by which to compare

different executions of the model. As with any simulation, multiple runs produce

distributional information about the results. This allows the user to extract more useful

and complete information from the model and use it to further refine real-world policy

initiatives.

2.3.4. User Interaction

Building the model with extensive user interaction gives the entire system a more

appealing feel. The ability to dynamically alter the characteristics of the agents in the

model and the environment itself allows the user to conduct 'what-if type analysis over a

great range of parameters while still executing the same run of the model. The user can

test both the timing and intensity of his policy decisions and immediately see their effect

on the pilots' retention and separation rates.

The parameters over which the user has control can be grouped into two

categories, those that affect the behavior of the pilot-agents themselves and those that

12

affect the environment within which the pilot-agents live. The behavior of the actual

pilot-agents is controlled by means of shifting a set of two utility curves, one representing

the amount of satisfaction that the pilot-agent receives from money, the other

representing the amount of gratification the pilot-agent receives from time-off. Added to

this, a scroll bar allows the user to determine the relative weight of each utility curve with

respect to the other curve, thus allowing for either a money-centered or time-centered

attitude (or even if set at 50-50). The environmental settings are controlled by a set of

scroll bars. These environmental settings include:

• the amount of pilot jobs available in the commercial airline market;

• the perceived pay gap between military and commercial pilots;

• the current flying operations tempo in the military.

Shifting the scroll bars attached to these settings alters the environment within which the

pilot-agents live, thus causing them to alter their behavior and adapt to their new

environment. Coupled with the pilot-agents individual attitudes (as measured by their

utility curves), the dynamic alteration of the environmental settings allows for the

emergence of complex behavior that hopefully mimics trends observed in reality.

User interaction also allows for easier justification of assumptions used within the

model. Since few parameters are hard-wired into the model itself, the user is free to

adjust the model's settings to fit his assumptions of reality. This facilitates sensitivity

analysis. All together, this gives the user more ownership in the entire model and allows

him to feel more like a part of the process rather than just a passive observer.

Since PICAS is a proof-of-concept of CAS simulation for personnel analysis,

some key assumptions must be clarified. We model pilot preferences using utility curves,

13

a common technique in decision analysis (see Clemen, 1996 and Kirkwood, 1997). Our

environmental factor choices are based on what seemed reasonable and what made model

use as intuitive as possible. The scales and ranges employed on all slider bars are

notional, meant merely to exercise the model. While subsequent analysis, Section 2.6

and beyond, might imply the realism of our parameters, that implication is for analysis

methodology development only and should not be construed beyond that use.

2.4. Simulation Model Development in Java

The Java language was used to create the PICAS model in order to maximize the

dissemination of the model due to Java's inherent cross platform capabilities. Added to

this, the relative ease with which Java handles graphics allowed us to create a simple yet

information rich display controlled by an intuitive graphical-user interface (GUI).

The development of an actual working model as a Java applet allows the user to

examine in real-time a sample of the type of artificial life-like behavior espoused by

complex adaptive systems theory. The use of Java also allows the user to examine the

source code with ease and learn about the algorithms used to create the life-like behavior

displayed by the model.

2.4.1. Agent Class

The agent class represents the objects being manipulated in the model itself. Each

pilot in the model is a separate instantiation of the agent class and has characteristics that

are particular to that pilot. The agent class contains information regarding each pilot's

location in the environment (by means of a coordinate plane) as well as the parameters

that govern the pilot's interactions with other pilots and the environment itself.

14

The agent class uses a fitness function to help determine the propensity of each

pilot's intentions regarding the retention/separation issue. The fitness function is used as

a means to determine which portion of the playing field attracts a given pilot-agent. The

fitness function combines the environmental parameters with the pilots' attitudes to

define an overall satisfaction rating for each agent. The values of the environmental

parameters are used as inputs in the utility curves that define the pilots' attitudes. The

hiring and paygap parameters are aggregated (via a simple average) and this value is used

as the X-axis input to the pilot-agent's money utility curve. The opstempo parameter is

used as the X-axis input to the pilot-agent's time utility curve. The Y-axis results from

both utility curves are then combined using the ratio specified by the time/money weight

scroll bar and a new fitness function is produced. This new fitness function is compared

to the pilot-agent's current fitness function and used to adjust the current fitness function

either up or down. In this way each pilot-agent gradually adapts to the new environment

based on his particular attitude.

The agent class also defines exactly how the pilots interact with each other and

their environment. The algorithm used here is based on Reynolds' boids simulation (see

Reynolds, 1998) and uses Java code from Dolan's MiniFloys Java applet (see Dolan,

1998). Each pilot-agent in the simulation keeps track of a certain number of neighbors in

his vicinity. Based on the agent's fitness and his proximity to other neighbors, he will

alter his behavior (i.e., change his movement on the screen) to remain close to his

neighbors, while at the same time following his propensity towards retention/separation.

A degree of randomness is introduced into the model by 'kicking' the system a certain

percentage of the time. This 'kick' results in the random shuffling of neighbors, thus

15

allowing agents to experience effects from other agents that might not otherwise be their

closest neighbor. This helps to add reality to the model by simulating the effects of

random outside occurrences on a pilot's decision making process (like Permanent

Changes of Station [PCSs] or Temporary Duty Assignments [TDYs]).

In the model, each iteration of the algorithm first determines whether or not the

current neighbors are in fact the agents closest to a given agent. If not, a swap is done

and the closer neighbors are assigned to the agent. Following this, the agent's fitness

function is updated based on the current environmental parameters and the current pilot-

specific parameters. Then each pilot is processed to determine in which direction and at

what speed his next movement should be executed. Reynolds' algorithms (Reynolds,

1998) are used here to ensure that the agents don't get too close to each other (the

separation principle), that they try to match the speed and direction of nearby agents (the

alignment principle), and that they head for the perceived center of mass of the other

agents in the immediate vicinity (the cohesion principle).

Built into the playing field upon which the agents interact are three basins of

attraction. The idea of a basin of attraction, first derived by those studying chaos theory,

is used as a means to capture the propensity of each agent towards retention or separation.

The center of the playing field (the third basin of attraction) is a holding ground for

undecided agents. The upper right-hand corner represents retention, and pilots with a

propensity to stay in the service migrate to this area when their fitness functions reach a

certain level. Conversely, the lower left-hand corner of the playing field represents

separation. Pilots whose fitness functions dip below a certain level move to this area of

the playing field and eventually leave the system when they separate from the service.

16

All pilot-agents contain information regarding how many years-of-service (YOS)

they have. This parameter is incremented each time the algorithm goes through 100

cycles. Regardless of when the pilot-agents separate from the system, their current years-

of-service is recorded for later use in the display of summary statistics. Upon reaching 20

YOS, pilots are removed from the system since they either retire or get promoted to

Colonel. This removal bounds the current system. Our rationale is that if a 20 year pilot

is not likely to be promoted to Colonel, then he will retire from the Air Force; whereas a

20 year pilot promoted to Colonel will become a Colonel's group asset and be handled by

a separate division of the personnel system (which is outside the scope of this model).

2.4.2. PilotRetention Class

This class represents the main applet class that controls the applet's execution.

The function of the PilotRetention class is to declare all the applet's variables, initialize

the simulation, start the simulation off, control the simulation as it runs, and then stop the

simulation in an orderly fashion. These actions are all performed by various methods

within the PilotRetention class.

In the initialization method, the PilotRetention class sets up the entire graphical

user interface. This includes drawing the playing field, creating the environmental scroll

bar controls and the pilot specific utility curves, and setting up the dynamic graph that

displays the summary statistics for the user. Lastly, the initialization method instantiates

the initial set of pilot-agents and gives the system its starting point.

The start method of this class kicks off the simulation clock. The clock is

implemented as the main thread of execution in the program, and uses Java's

multithreading capabilities to animate the agents on the playing field by means of

17

slowing down the processing speed of the algorithm at certain times. This is done by

'sleeping' the main thread of execution after each complete processing cycle through all

the agents. The 'sleeping' is necessary to allow the user to see the animation on the

screen. Without it, the speed at which the animation would occur would result in a blur

on the screen and eliminate a great portion of the usefulness of this simulation.

After being initialized and started, the run method executes the actual applet. It

cycles through the agents one at a time, updating their fitness functions and processing

them for movement. A small percentage of the time (currently set at 5%) it 'kicks' the

system and causes the agents to randomize their neighbors. This introduces a degree of

stochasticity into the model. Every 100 cycles through the algorithm, the run method

introduces a new agent into the program. This ensures that there is a constant pool of

agents in the system and helps to offset the departure of agents that either separate or

retire at the end of their career. The actual vessel which stores the individual agents is a

Java class called a vector, which is essentially a linked list. Using a vector allows the

program to reap all the benefits of linked lists (popping entities out of the middle and

adding entities to either end) without the need to keep track of pointers. This alone

makes Java an excellent programming language for handling this simulation. The run

method will execute forever, continuously cycling through each agent in the system.

Java's multithreading 'sleep' capabilities are employed at the end of each cycle so that

the animation of the movement of the agents can be observed by the user.

The stop method terminates the main thread of execution, ending PICAS in an

orderly manner. This method is never explicitly called but is activated when the program

is terminated by the user.

18

2.4.3. SummaryStats Class

The SummaryStats class collects and displays quantitative information that is

created during the execution of the simulation. This method allows the user to view

model results and compare different model runs.

The statistics displayed are those regarding the separation time-frames of the

agents. The percentage of agents separated at the minimum, middle, and end of career

points are dynamically displayed in real time on a line graph at the bottom of the applet

screen. Each agent that separates, regardless of his years-of-service, adds one to the

denominator of these three statistics. Depending on the time-frame that the agent

separates, the numerator of one of these three statistics is incremented by one. If the

agent separates between 8 and 12 years-of-service, then the numerator of the minimum

career point statistic is incremented by one. If the agent separates between 12 and 20

years-of-service, then the numerator of the middle career point statistic is incremented by

one. Finally, if the agent separates at the 20 year point (and all agents are forced to

separate at this point if they have not yet separated), the numerator of the end of career

point statistic is incremented by one.

The separations occur in one of two ways. If any particular agent is present in the

lower right-hand corner of the screen for 100 iterations through the entire system's

algorithm, he is flagged as ready for separation. As soon as this agent meets his

minimum service requirements, he is allowed to separate. The other method of

separation occurs whenever an agent reaches the 20 years-of-service point. At this time

he is automatically separated, analogous to retirement from the service.

19

2.4.4. Graphical User Interface (GUI)

The Graphical User Interface (GUI) allows the user to both view the animation

and data output of the model as it runs and dynamically alter the characteristics of the

model in real-time. The actual display is divided into 5 parts (see Figure 1: Screen

Capture of PICAS Model), represented by Java's border layout manager. At the top

§H Applet Viewer: PilotRetention.class ■BB
Applet

Pilot Inventory Complex Adaptive System (PICAS)

Airline Job Avail

low 80 high

Perceived Pay Gap

A A
low 80 high

Operations Tempo

low 80 high

Time vs Money

iT " J I
tm 50 50 $

Figure 1: Screen Capture of PICAS Model

(north position) is the title of the model. On the right (east position) are the

environmental controls. On the left (west position) are the pilot controls. On the bottom

(south position) is the display of the summary statistics. In the center (center position) is

20

the pilot-agents' playing field where the animation of the pilot-agents conducting their

decision process is displayed.

The dynamic control of the model is handled by the GUI's interface with the user.

Included in this interface are controls for both the environmental parameters as well as

the parameters of the pilots themselves. The user is able to alter one or all of these

parameters and observe the effects immediately on the simulation in progress.

The environmental parameters are controlled by means of a series of slider bars,

one for each of the environmental controls included in the model. The potential for

employment as a commercial pilot is controlled by the slider bar called 'Airline Job

Avail'. The 'Perceived Pay Gap' slider controls the (perceived) degree of monetary

discrepancy between Air Force pilots and their commercial counterparts. We say

'perceived' to differentiate from any actual pay-gap data currently available. This also

reinforces the notion that perceptions with regard to pay drive the pilots' behaviors,

irregardless of the actual pay gap. Lastly, the intensity of flying operations are controlled

by the slider entitled 'Operations Tempo', a notional concept related to deployment

demands and thus lack of time off or family time. All of these sliders can be altered from

a low state (represented by a zero) to a high state (represented by 100). A bad

environment is simulated by setting these parameters at high levels (say 80 or higher),

while a good environment is represented by low settings (say 20 or lower). At the middle

setting (around 50) the environment is considered average. The numbers, actually, do not

mean anything explicitly to the user, but they do add a degree of scale to the model. The

numbers allow the user to see exactly how much he is changing a certain parameter.

Each environmental parameter can be changed independently of the other parameters and

21

all effects are felt immediately by the simulation. This real-time interaction allows the

user to observe the effects of his actions on the simulation without having to restart or

rerun the entire model every time a parameter is altered.

The individual pilot-agent parameters are controlled by means of two utility

curves, one representing money and the other representing time-off. These utility curves

are controlled by a slider bar at the bottom of each curve (see Figure 2: Utility Curve

Example). Sliding the bar in either direction increases or decreases the curvature of the

Figure 2: Utility Curve Example

entire curve and therefore changes the dynamics of the pilot's reaction to his

environment. The utility curve idea is based on the fact that a certain degree of utility—

measured on the Y axis—is derived by a given amount of a certain measurable

quantity—depicted on the X axis. The slider bar allows the user to alter the shape of the

curve making it either concave (bowed downwards towards the lower left as in Figure 2

22

above), convex (bowed upwards towards the upper right), or a straight line. Utility

theory is used to approximate the pilots' attitudes towards service by capturing their

satisfaction with regards to the money they make and the amount of time-off they have.

Two examples illustrate how to interpret these curves. Looking at the time-off

curve, moving the slider bar left bows the curve upward and to the left, thus creating a

convex utility curve. For such a curve, even a small X-axis input would result in a decent

degree of utility. Therefore, even amidst a bad environment (represented by a high

'opstempo' setting which is in-turn converted to a small X-axis input on the utility curve)

a good degree of satisfaction will be arrived at from a convex utility curve. For such a

curve the environmental parameter ('opstempo' in this case) does not play a big part in

determining the pilot's career aspirations. Conversely, moving the slider right bows the

curve downward and to the right, thus creating a concave utility curve. A small X-axis

input for such a curve results in a very low degree of utility. Therefore, given a bad

environment, the pilot's concave utility curve will produce a low utility score, thus

inducing the pilot towards separation. For concave utility curves, the environmental

parameter plays a large part in answering the separation/retention question.

Coupled with the fourth slider bar below the three environmental slider bars, the

user may dynamically alter both the shape of the pilots' utility curves and their weight

with respect to each other. This allows the user to completely control the pilots' overall

attitudes towards their intentions regarding separation and retention.

The controls in the model all work together to alter the fitness function of the

pilot-agents within the system, therefore allowing them to adapt based on their personal

attitudes (as captured by their utility curves) and the status of their environment (as

23

captured by the environmental controls). The values from the 'Airline Job Avail' slider

bar and the 'Perceived Pay Gap' slider bar are combined (by means of averaging) and

then used as the X-axis inputs into the utility curve representing the pilot's attitude

towards money. The 'Operations Tempo' slider bar value is used as an X-axis input into

the 'time-off utility curve. The utility values (measured on the Y-axis of each utility

curve) are then combined to derive a new fitness function for each agent. This new

fitness function is compared to the agent's current fitness function, and causes the current

fitness function to adjust so that it coincides more with what the current environment

represents. In this way, the agents 'learn' and adapt gradually to their environment, and

eventually exploit it to fulfill their career aspirations. If the fitness function dips below a

certain threshold, the pilot-agents will migrate towards the separation attractor and

eventually leave the system. Conversely, if the fitness function remains at a high enough

level, the pilot-agents will either be in an undecided state or migrate towards the retention

attractor.

2.5. Verification and Validation

2.5.1. Verification of the Model

Verification of the PICAS model was accomplished throughout its development.

All subroutines and methods were vigorously tested in stand-alone applications for

accuracy before they were integrated into the entire model. Various intermediate results

were derived and examined for accuracy. This helped to establish algorithms and code

that mimicked the system's actual behavior.

24

Upon completion of the coding aspects of the model, numerous runs were

conducted at various different parameter settings to ensure that the program handled all

types of conditions. The animation presented by the model was also examined for

realism and determined to be both intuitive and insightful.

Overall, verification was fairly straight forward due to the rather simple

construction of complex adaptive systems. By their very nature, complex adaptive

systems are comprised of agents that follow simple rules. The interaction of these agents,

however, is what leads to complexity and emergent behavior that is nearly impossible to

pre-program. The PICAS model follows this paradigm perfectly. The agents are subject

to simple rules, but their apparently chaotic behavior on the screen is both complex and

compelling to watch.

2.5.2. Validation of the Model

The PICAS model was designed as a descriptive model, not a prescriptive tool.

As such, recreating past behavior is more important than the ability to predict the future.

This complicates model validation. For the PICAS prototype, strict validity is not

crucial, but initially valid behaviors are desirable. For our purposes, valid behaviors are

deemed present if the emergent behaviors presented by the model suggest what history

found to hold. Our two cases are pre-Desert Storm and post-Desert Storm. For each, we

define the scenario and set the notional slider scales to those values providing the proper

parameter settings.

Before the Gulf War, in the late 1980's, a draw-down was in effect throughout the

Department of Defense. This meant that pilot retention was not a real issue, since pilots

that separated on their own spared the Air Force the burden of forcing pilots out of the

25

service in order to meet draw-down requirements. Setting the environmental parameters

to reflect a poor environment (i.e., values around 85) and creating indifferent utility

curves for pilots' attitudes (i.e., rhos of 0) would mimic this scenario and the PICAS

model presents a definite degree of separations before retirement.

During Desert Storm, however, so many early separations would not have been

beneficial, since the Air Force needed every trained pilot it could muster to gain air

supremacy over the skies of Iraq and maintain the air bridge from the United States.

Despite the continued economic prosperity in the United States (i.e., hiring value set at

85) and the increasing wage gap between the military and civilian aviation sectors (i.e.,

paygap set at 85), pilot retention was not adversely affected. This can be explained by

the pilots' commitment to the Air Force core value of 'service before self and can be

modeled in PICAS by swinging the utility curves towards the right and creating convex

functions (i.e., with rhos around 25). During the war, pilots attitudes towards money and

time-off were strikingly positive. Even though Desert Storm forced many pilots to be

separated from their families for months and subjected to incredibly high operations

tempos (i.e., opstempo set at 95), pilots did not seem to mind because they were fulfilled

by the requirements of their jobs. This positive attitude is reflected in the PICAS model

by inducing a very convex nature to the pilots' utility curves. With highly convex utility

curves, even if X-axis inputs are relatively small, a great degree of utility can still be

achieved. This allowed pilots' fitness functions to remain high enough to avoid

separation, despite the fact that the environment was quite unappealing towards them.

As Desert Storm came to an end, however, the environment gave no indication of

reverting back to a more pro-retention position. The commercial sector, already

26

appealing during the war, remained so after the war. Airlines were hiring and paying

well; reflected by setting hiring and paygap at 85 in the PICAS model. The Air Force,

however, was not doing much to increase pilot pay, and the operations tempo remained

incredibly high (i.e., set at 85). With no war to rally behind, pilot's attitudes got

progressively worse; their utility curves went from convex to indifferent (or straight-

lined) to concave (i.e., negative rhos). As such, pilots were increasing their propensity to

separate from the service and enter commercial aviation. By altering the utility curves in

the PICAS model to make them more concave, this behavior emerges. Today, the Air

Force is in a similar predicament. Commercial aviation is thriving and continues to

advertise better jobs with more pay. The operations tempo is still at record highs, and

pilots have no real-world missions to revive their esprit-de-corps. As such, attitudes

towards money and time-off are getting more pessimistic (as represented by concave

utility curves) and more pilots are separating earlier in their careers to remove themselves

from the poor environment being created in the Air Force.

2.6. Analysis Methods Using Complex Adaptive Systems

2.6.1. Prescription versus Prediction

Among the biggest criticisms of complex adaptive systems theory and artificial

life approaches to agent-based modeling is the fact that repeatability of experiments is

very difficult. This leads to problems with developing confidence intervals for

experiments, hence detracting greatly from the predictive power of such a model.

Complex adaptive systems theory advocates, however, point out that complex adaptive

systems are best used in models for their prescriptive abilities to provide insight.

27

While the notion of using models for prescriptive purposes has been around for a

long time, modern simulation practitioners have under-emphasized this side of modeling.

Many computer models in use today try to predict the future. However, many models

used throughout human history were aimed at describing the workings of a system, not

making predictions about it. Any biology student knows the benefits of using a model of

the human body to help understand all its organs and bodily systems. The model does

not provide predictions for the outcome of medical procedures. Examining and

understanding the model, though, does lead to a profound understanding of the entire

system, which in turn can be used to gain insight into the possible ramifications of certain

drugs and/or medical procedures. So, although the model does not predict anything by

itself, understanding the model helps the user deduce future events by assimilating the

knowledge he has observed and processing it in a logical manner.

In the same way, the pilot retention issue will not be solved by the results

obtained from a CAS model, but insights gained from it could provide policy makers a

better understanding of the inner workings of the system. If the model can be built in

such a way as to mimic reality with a high degree of accuracy, then the model can be

examined and the real system better understood. By understanding the true system, the

model user gains insight into the possible results of certain policy decisions. This

information can help guide policy actions by decision makers.

Although they may lack specific prescriptive capabilities, CAS-based models

allow their users to determine some aspects about the predictive power of their models.

For one thing, because complex adaptive systems theory is based on chaos theory, these

models generally contain certain basins of attraction that seem to cause emergent

28

behavior to gravitate towards small zones of feasibility. Therefore, the user is able to

determine with relative certainty that the end result of the model's execution will lie in

some basin of attraction. This means that although the user might not know which basin

of attraction the model results will drive to, they know it will drive to some basin of

attraction. If the basins of attraction are smaller than the entire feasible space that the

agents can occupy, then knowledge of these basins is very informative with regards to

predictive capabilities. Instead of knowing where the system is in the future, the user can

tell where the system won't be in the future. This can focus attention and analysis on

those areas that contain the attractors, and may lead to the discovery of scenarios and

parameter settings that induce results into the preferred basins of attraction.

In the pilot retention model, this information can be very important. Looking at

the playing field, there are basically three basins of attraction: the undecided basin, the

retention basin, and the separation basin. During model execution, pilot-agents move

towards one of these attractors. Policy decisions either induce pilots to separate from the

Air Force or persuade them to stay in the service. Those decisions that result in a clear-

cut decision one way or the other are easy to understand, but those that result in fairly

even splits are the ones that would require further research. Again, the model user can

now concentrate his efforts on exploring those options that seem to produce the

ambivalent results. The model has helped focus on the important issues.

2.6.2. Exploratory Modeling

Exploratory modeling involves creating a database of models (or individual model

runs) that can then be referenced once a given decision must be addressed. By creating

models that run the entire gamut of the system's feasible space, the database created can

29

be used to come up with a response function for all the parameters of the system. This

would allow a user to determine if there are any local extrema within the system's

feasible space. Such information could be used to help maximize the decisions involved

in making the system run at peak performance.

For the pilot retention problem, exploratory modeling helps determine which

policies yield the greatest benefit with regards to pilot retention. This allows the model

user to narrow in on the models that warrant further investigation. The goal is spending

less time on the modeling exercise and more time refining those policy initiatives that

show promise.

2.7. Model Results

2.7.1. Model Results from Various Parameter Settings

To analyze the results produced by the model, a series of experiments were

conducted at various different parameter levels. In an effort to cover a wide range of

parameter values, an experimental design was created varying each parameter between a

relatively high value and a relatively low value (see Table 1: Experimental Design for

Analysis of Model Results). Specifically, for the three environmental parameters, each

was varied between either 20 (representing a good environment) and 80 (representing a

bad environment). The pilot attitudes were varied by means of changing the rho (p)

value of their utility curves. A rho of-25 represents a concave utility curve, meaning a

high X-axis input is required to create a good degree of utility. Conversely, a rho of 25

represents a convex utility curve, which does not require a high X-axis input to derive a

decent level of utility. Lastly, a rho of 0 represents a straight line, or in utility theory,

30

indifference with respect to the utility arrived at by any given X-axis input. For a straight

line utility curve, the amount of utility derived from a given input is linearly related to

that input. Table 1 summarizes the various settings depicted in the graphical results

below. Each number in the table corresponds to the three environmental parameter

Table 1: Experimental Design for Analysis of Model Results

s
•■0 o s

opstem po = 20 opstempo = 80
payga] p = 20 payga] p = 80 payga] p = 20 paygap = 80

hire = 20 hire = 80 hire = 20 hire = 80 hire = 20 hire = 80 hire = 20 hire = 80

-25
-25 1 10 19 28 37 46 55 64

0 2 11 20 29 38 47 56 65

25 3 12 21 30 39 48 57 66

0
-25 4 13 22 31 40 49 58 67

0 5 14 23 32 41 50 59 68

25 6 15 24 33 42 51 60 69

25
-25 7 16 25 34 43 52 61 70

0 8 17 26 35 44 53 62 71

25 9 18 27 36 45 54 63 72

settings in its column and the two pilot attitude settings in its row. As such, all 72

numbers in the table represent a full factorial design of every permutation of the two

levels (20 and 80) represented by the three environmental parameters and the three levels

(-25, 0, and 25) represented by the two pilot attitude parameters. These numbers are

referenced by the graphs to help determine the settings of the parameters that lead to the

behavior displayed on each graph.

For each of the experimental design settings conducted here, 5 runs were

completed and the results were aggregated into an average. This data was then graphed

for each type of separation: at minimum years-of-service, at the middle career point, and

at the end of career point.

31

Separations at the minimum years-of-service point (see Figure 3: Separations at

the Minimum Years-Of-Service Point) showed two distinctive patterns in the separation

Separations at Minimum Years-Of-Service

100 _

80 - ^,0---—
60. J&^

% dF 40 . JB*
20 .

0 H
f

time

Figure 3: Separations at the Minimum Years-Of-Service Point

trends of the pilot-agents. The upper group of lines on the graph represent runs number

46, 49, 55, 58, 64, 65, 67. For these runs, according to Table 1, either the environment

was very bad (i.e. two or more environmental controls were set at 80) or the pilot

attitudes were poor (i.e. at least one utility curve was concave). The rest of the runs

resulted in either very low separations (less than 5% of the total separations recorded

throughout the run) or none at all. In either case, the emergent behavior resulted in the

pilot-agents not separating from the service.

32

Separations at the middle career point (see Figure 4: Separations at the Middle

Career Point) also showed two distinctive separation trends. Here again, the upper group

Separations at Middle of Career

80.

60 -

% 40 -

20 -

0
time

Figure 4: Separations at the Middle Career Point

of lines on the graph represent runs number 46,49, 55, 58, 64, 65, 67. As above, these

runs, according to Table 1, represent either a very bad environment (i.e. two or more

environmental controls were set at 80) or poor pilot attitudes (i.e. at least one utility curve

was concave). The spike that occurs near the beginnings of these runs is interesting.

When originally created, the model starts with a random set of pilot-agents. These

original pilots have a uniformly distributed age represented by their years-of-service.

Therefore, if the environment and/or pilot attitudes are such that separation occurs, all

eligible agents will separate. Naturally, this means that some agents will be below 12

33

YOS, and therefore counted as separating at the minimum YOS point, while others will

be above 12 YOS but not yet retirement eligible. When they separate, they will be

counted as separating at the middle of their career. With a poor environment or pilot

attitude, though, as new agents are introduced into the model, they will all separate as

soon as they can, thus increasing the minimum YOS statistic's numerator (and therefore

its resultant percentage) while only the denominator for the middle career separators

increases (thus lowering its resultant percentage). As time goes on and more agents

separate as soon as they can, the middle career point statistic continues to decrease, hence

the downward sloping nature of these curves. Exactly as with the minimum separators,

the rest of the runs resulted in either very low separations (less than 5% of the total

separations recorded throughout the run) or none at all.

Lastly, separations at the end of career point (see Figure 5: Separations at the End

of Career Point) showed the same two distinctive separation trends. The lower group of

lines on the graph, representing runs number 46, 49, 55, 58, 64, 65, 67, correspond to

either a very bad environment (i.e. two or more environmental controls were set at 80) or

poor pilot attitudes (i.e. at least one utility curve was concave). These lines show that

retention for the entire pilots' careers goes down drastically because the system is driving

the pilot-agents to separate early. Initially, due to the nature of the model, an older pilot

(one with nearly 20 YOS) will retire before he is affected by the environment. The step-

wise progression of the lines towards the right of the graph are the result of averaging the

five runs into one data point. These steps occur at exactly 20%, 40%, 60%, and 80%. If

for any given run the first agent separates at the 20 year point due to his age, then the first

data point graphed by the SummaryStats class will be a green line at 100%. This is

34

because the first and only data point until that time is an end of career separator.

However, in the other four runs used to arrive at the aggregate data point graphed below,

Separations at End of Career

100

80-

60 -

%

40 -

20 -

n
Iwte»^^

time

Figure 5: Separations at the End of Career Point

there may or may not have been a separation at this time yet. Therefore, when the data is

averaged, the step-wise behavior will occur. Again, exactly as shown before, the rest of

the runs resulted in very high retention (95% or better) until the end of career point. This

result confirms our intuition since parameter settings maintaining a good environment

and/or a positive pilot attitudes should eliminate the early separation of pilots.

2.7.2. Response Surface Methodology Results

To get a better understanding of the interactions of the various parameters in the

model and their effects on the pilot-agents' propensities towards separation and retention,

35

a regression analysis was conducted using response surface methodology (RSM). Using

RSM allowed us to determine the shape of the response surface created when various

parameter settings were used. It also allowed us to examine the interactions between

various parameter settings and determine if any particular type of environment and/or

pilot attitude combination produces particularly interesting results that would warrant

further investigation.

To start off the entire process, an experimental design had to be created. A

central composite design with face-centered axial points was determined to be the best

design for our analysis. The coding scheme used to create this central composite design

required that each of the five parameters be varied above and below its center point by an

equal amount (represented by +1 and -1 in the coded space). This resulted in the coding

schemes depicted in Table 2 below. In addition to the 32 full factorial design points

Table 2: Coding Schemes for RSM Analysis

parameter -1 coded to 0 coded to +1 coded to
money -25 0 25

time -25 0 25

hiring 20 0 80

paygap 20 0 80

opstempo 20 0 80

required to analyze this model, 10 axial points and 10 center points were needed to

examine curvature. Due to the limited feasible region covered by the parameters in this

model, face-centered axial points were used to test for curvature. These face-centered

points were therefore coded as +/-1. Each design point was arrived at by conducting 5

runs and then averaging the results. The data point used was the last observation of each

run (i.e. the 400th observation). This resulted in three sets of data, one for the percentage

36

of pilots separating at the minimum YOS point (min), one for the percentage separating

at the middle career point (mid), and finally one for the percentage separating at the end

of career point (end).

The 52 design points were analyzed using SAS JMP's fit model routine. For each

set of points, a stepwise regression was conducted using a 0.05 probability to enter or

leave the model. Based on the effects suggested by each respective stepwise regression, a

final regression model was run for each set of data. Upon examination of the residuals,

however, SAS JMP indicated that the normality assumption was violated for all three

models. In each case, the W statistic from the Shapiro-Wilk test indicated that the

distribution was not normally distributed (see Table 3: Normality Test Results For

Regression Analysis).

Table 3: Normality Test Results For Regression Analysis

W p-value
minimum career separators 0.797831 <0001

middle of career separators 0.945112 0.0301

end of career separators 0.842189 <0001

Due to the lack of normality of the residuals, statistical inferences concerning the

significance of effects could not be made based on the p-values given using standard

linear regression methods. Therefore, the Kruskal-Wallis (KW) test was used to analyze

the data. Since the KW test is a non-parametric test, there is no need to ensure that the

residuals are normally distributed. This allowed us to determine if there were any

statistically significant effects based on separation percentages as a result of the

parameters settings we investigated. Table 4: Kruskal-Wallace Test Results, presents a

summary of the information obtained using the Kruskal-Wallace test. Each effect was

37

tested to determine whether or not it was statistically significant in the overall model.

Table 4 presents the KW test-statistics and resultant p-values for each of the main effects

and all possible two-factor interaction effects in all three scenarios (minimum career

separators, middle of career separators, and end of career separators).

Table 4: Kruskal-Wallace Test Results

min mid end
term KW-stat p-value KW-stat p-value KW-stat p-value

MEAN 0 0 0 0 0 0

money 2.5081 0.2854 4.8377 0.0890 4.5462 0.1030

time 7.8918 0.0193 7.0392 0.0296 7.0803 0.0290

hiring 2.1805 0.3361 2.3688 0.3059 2.3374 0.3108

paygap 3.8674 0.1446 1.6872 0.4302 2.4793 0.2895

opstempo 2.5081 0.2854 6.1302 0.0466 5.5882 0.0612

money*money 1.3468 0.2458 1.9404 0.1636 1.9667 0.1608

time*money 2.3256 0.3126 1.1829 0.5535 0.9623 0.6181

time*time 3.1037 0.0781 0.4557 0.4996 0.8280 0.3629

hiring*money 1.9839 0.3709 1.4152 0.4928 1.5673 0.4567

hiring*time 2.9342 0.2306 0.6546 0.7209 0.8780 0.6447

hiring*hiring 1.3468 0.2458 0.1176 0.7317 0.2022 0.6530

paygap*money 2.9675 0.2268 0.8071 0.6679 0.8714 0.6468

paygap*time 1.9868 0.3703 0.7086 0.7016 0.9076 0.6352

paygap*hiring 3.0014 0.2230 1.2422 0.5373 1.1519 0.5622

paygap*paygap 1.3468 0.2458 0.5788 0.4468 0.6795 0.4098

opstempo*money 2.0213 0.3640 0.8531 0.6528 1.0939 0.5787

opstempo*time 9.8608 0.0072 3.9923 0.1359 5.1266 0.0770

opstempo*hiring 2.0213 0.3640 1.6098 0.4471 1.5673 0.4567

opstempo*paygap 2.6880 0.2608 0.8294 0.6605 1.1829 0.5535

opstempo*opstempo 1.3468 0.2458 0.9508 0.3295 1.0562 0.3041

Using a 0.05 level of significance, each model was examined to determine which

effects were statistically significant in explaining the variation within each data set. For

all three data sets, the 'time' variable was determined to be statistically significant.

Added to this, the 'opstempo*time' interaction effect was statistically significant in the

38

minimum career separators model and the 'opstempo' effect was statistically significant

in the middle of career separators model.

Using this information, each regression model was then re-run with only its

statistically significant terms included. The effects' estimates and the model's statistics

are presented in Table 5 below:

Table 5: RSM Results of Statistically Significant Model Effects

term min mid end
MEAN 5.1500 1.1719 93.6783

time -7.6350 -1.0685 8.7032

opstempo N/A 1.2274 N/A

opstempo*time -8.2400 N/A N/A

R2 0.1986 0.2661 0.0989

adjusted R2 0.1659 0.2361 0.0809

Shapiro-Wilk W statistic 0.6147 0.7582 0.5368

Shapiro-Wilk p-value <0001 <0001 0.0000

When the residuals for these models were examined, again, it was determined that

the error terms were not normally distributed (see Shapiro-Wilk W statistics in Table 5).

The lack of normality comes as no surprise; the data represented here is primarily bi-

modal—a pilot either separates or stays in. After 400 observations, the resultant

percentage of separations is either very high or very low with little in-between. Such bi-

modal data does not lend itself very well to conventional regression analysis, but

prescriptive inferences from the analysis are still obtainable.

Looking at the signs of the parameter estimates presented in Table 5 is another

source of verification for the results presented by the PICAS model. For the percentage

of separations at the minimum YOS point and the middle career point, the sign of the

time parameter estimate is negative. This means that a negative setting for this parameter

39

leads to a higher percentage of separations. A negative setting for the time parameter

corresponds to a concave utility curve, requiring a greater X-axis input to acquire a

decent degree of utility. This agrees completely with our intuition. As pilot attitudes get

worse, the separation issue gets harder to deal with. The same parameter has an estimate

with a positive sign for the percentage of separations at the end of career point. This

means that a positive setting leads to a higher percentage of separations at the end of

career point. Since a positive time setting represents a convex utility curve which does

not require a high X-axis input to achieve a high degree of utility, this again agrees with

our intuition. If pilot attitudes are positive, then most will remain in the service until they

separate at retirement.

Looking at the estimates for the opstempo environmental parameter settings, the

same kind of results are apparent. For the data representing pilots separating at the

middle of career point, the estimate for opstempo is positive. This means that a higher

setting will result in more separations. Since a higher setting corresponds to a harsher

environment, we are comforted in the intuitive appeal of this result.

The sign of the interaction term deemed statistically significant for the minimum

career separators model, although somewhat harder to explain intuitively, does agree

mathematically with the above discussion. Basically, the opstempo*time interaction

term's sign is just the multiplicative combination of the signs of the opstempo estimate

(which would be 7.5747 if opstempo were included in this model—it isn't because it

wasn't deemed statistically significant by itself) and the time estimate. Other than this,

this term does not provide any real insight into the issue, and attempting any further

explanation is dangerous.

40

As an aside, it is interesting to note that the hiring and paygap environmental

parameters and the money pilot attitude parameter are not present in any of the models.

The cause of this lies in the fact that these two environmental parameters are actually

combined to produce the X-axis input into the money utility curve. As such, the effects

of all three parameters are diluted by the model, and the other effects surpass them in

significance. This again confirms our intuition about how the PICAS model was built to

perform.

2.7.3. Three Dimensional Graphical Analysis of Results

In order to provide a better graphical representation of the results presented by the

PICAS model, we endeavored to create a surface plot encompassing all five parameters

for each separation statistic. The problem, however, was that we needed to aggregate our

five independent variables into the two dimensions required to create such a surface plot.

Since the PICAS model provides two basic means for control—altering pilot attitudes or

altering the system's environment—we felt this was the natural way to go.

Pilot attitudes, modeled by the money and time-off utility curves, were

represented by summing the rho settings for the combinations of utility curves used

throughout the data analysis conducted in sections 2.7.1 and 2.7.2. This resulted in an

overall pilot attitude parameter with values of-50, -25, 0, 25, and 50. The overall

environment was depicted in a similar manner. With three separate dimensions

representing airline hiring practices, the perceived paygap, and the current operations

tempo, the overall environmental parameter was also created using summation. In this

case, the combinations of the three environmental dimensions used throughout analysis of

the PICAS model resulted in overall environmental parameter settings of 60, 120, 150,

41

180, and 240. These two parameters, which captured all the data in the five parameters

of the PICAS model, were then used as the X and Y axes on a surface plot for each set of

separation data (minimum YOS, middle career point, and end of career point).

Looking at the surface plot of the separations at the minimum YOS point, no

surprises are apparent (see Figure 6: Surface Plot of Minimum YOS Point Separators).

Minimum Separation Percentage vs Pilot
Attitude & Environment

100.

percentage
separated

240

150
environment

pilot attitude

Figure 6: Surface Plot of Minimum YOS Point Separators

As can be expected, only an average to poor environment (settings of 150 or higher)

coupled with negative pilot attitudes (rhos of-25 or lower) results in significant

separations early in a pilot's career. This confirms with reality and also provides policy

makers an important piece of information. If either the pilot's attitudes or the

42

environment can be made better, then early separation could be reduced significantly.

Also, the graph indicates that the environment seems to affect separation more than pilot

attitudes. Even at an average pilot attitude (rhos summing to 0), separation is not an

issue. But, for average environmental settings (settings of 150), if the pilot attitude is

really poor (rhos summing to -50), then separation becomes an issue. Based on this

information, it may be prudent for policy makers to concentrate on improving the pilots'

environment rather than improving pilots' attitudes.

The surface plot of the separations at the middle career point is a bit more

interesting (see Figure 7: Surface Plot of Middle of Career Separators). Just like the

surface plot of the separations at the minimum YOS point (in Figure 6 above), this

surface plot shows that separations are the highest whenever both the environment and

the pilots' attitudes are poor. However, the separations at the middle of career point also

increase if either one of these parameters is at its worst, regardless of the setting of the

other parameter. If the environment is at its worst setting, corresponding to a value of

240, then even if the pilots' attitudes are at their best, corresponding to a value of 50,

there are a significant amount of separations at the middle career point. In the same

manner, if the pilots' attitudes are at their worst setting (-50), and the environment is at its

best setting (60), there is still a rise in the percentage of separations at the middle career

point. Comparing these two extremes, however, it is very apparent that the latter is not as

severe as the former. A very poor environment coupled with excellent pilot attitudes

results in a much greater separation percentage than very poor pilot attitudes coupled

with an outstanding environment. This information is very valuable to policy makers. It

indicates that given a choice between which issue to attack first, the best course of action

43

would be to concentrate on making the environment more favorable instead of trying to

improve the pilots' attitudes. Added to this, this conforms to the results of the surface

Middle Separation Percentage vs Pilot
Attitude & Environment

16-

percentage
separated

12-

240

150
environment

pilot attitude

Figure 7: Surface Plot of Middle of Career Separators

plot of minimum YOS separators presented in Figure 6 above.

The last surface plot depicts the percentage of separations that occur at the end of

a pilot's career (see Figure 8: Surface Plot of End of Career Separators). This surface

plot represents the percentage of pilots that remain in the Air Force until retirement.

Compared to the other two surface plots, this graph is a mirror image of the sum of the

data depicted on the previous two plots. As expected, this plot shows that pilots remain

44

primarily career minded unless both the environment and their attitudes become very

poor. Retention until retirement also dips a bit if either the environment is at its poorest

End Separation Percentage vs Pilot
Attitude & Environment

100.

percentage
separated

240

150
environment

pilot attitude

Figure 8: Surface Plot of End of Career Separators

level (regardless of pilots' attitudes) or the pilots' attitudes are at their poorest level

(regardless of the environment). The dip, however, is greater if the environment is poor

while pilots' attitudes remain positive. Once again, this implies that decision makers

should concentrate more on enhancing the environment to induce retention, rather than

trying to alter individual attitudes.

45

2.8. Results and Conclusions

Complex adaptive systems are an excellent way to model complicated behavior

using autonomous agents following simple rules. The goal of all complex adaptive

system simulations is to spot trends in the system's emergent behavior. Since the

interactions between the agents in the simulation are characteristic of a chaotic system,

one in which the underlying order appears random on the surface, the ability to make

short-term predictions is all but non-existent. However, chaotic systems do display long

term trends, and it is for this reason that complex adaptive systems are useful. The goal

is to take advantage of the system's tendencies toward self-organization and look at the

emergent behavior inherent in the system's local chaotic actions and interactions. In the

long run, we may not know exactly where the system is going to be, but we at least have

a notion of the state space involved. As Holland points out, the emergent phenomena in

generated complex adaptive systems are typically persistent patterns with changing

components (Holland, 1998:225). For our purposes, as new pilots enter the model and

old ones leave (either via retirement or separation) the model's behavior will still tend to

be the same because the system in the aggregate is not changing. The system is in steady

state, and the turnover of a few agents will not significantly alter the system-wide

behavior.

The persistent patterns that emerge can usually be shown to satisfy macro-laws.

This means that the model may suggest policies useful in the entire Air Force, not just the

pilot community. However, a model based on complex adaptive systems theory should

be built for the entire Air Force personnel system and examined for the behavior that

emerges from it.

46

The use of the computer to model the pilot inventory problem alleviates the need

to experiment on the actual force. As Holland points out, in this manner:

Computer-based models provide a half-way house between
theory and experiment. Computer-based models are not
experiments in the usual sense because they do not directly
manipulate the world being modeled. Nevertheless, as the
model is executed, patterns and symmetries will typically
show up in the ongoing action... Such emergent
characteristics can suggest experimental designs for real
situations. (Holland, 1998:119-120)

This means that by using complex adaptive systems to model the pilot inventory problem,

the Air Force leadership has a way to examine future program policies without harming

the current force. If the computer simulation suggests favorable results, then

confirmatory experiments on the actual force could be considered. This would save both

time and money for planners in the Air Force and avoid costly embarrassments due to

unforeseen circumstances or responses to policy initiatives.

One must not forget that computer models merely guide our decision making

process. In this manner, they tend to serve two roles. In one respect, they "provide a

rigorous demonstration that something is possible" (Holland, 1998:241). On the other

hand, they "suggest ideas about a complex situation, suggesting where to look for critical

phenomena, points of control, and the like" (Holland, 1998:241). A well-designed model

provides insight into the system it represents. It allows the user to test out new ideas

without risk of harm to the actual system. It enables the user to examine different paths

of possibilities that could not be explored in the real system. Using a complex adaptive

systems theory approach to model building, it is hoped that the pilot inventory problem in

the Air Force may benefit from some of these insights. Future developments using such

47

an approach to personnel modeling might even overcome the long-term predictive

limitations of current models and allow us to better manage our inventory of personnel in

the Air Force.

48

CHAPTER 3

3.1. Further Extensions of this Research Effort

There are many areas of further research on this topic. For the current model,

more detail could be included in the actual definition of the agents that comprise the

simulation. For instance, one could add more parameters aimed at differentiating

between individual agents. These added parameters would help increase the reality of the

entire model by adding more individuality to each agent, hence adding more legitimacy

to the model's results. Along with the added parameters in the individual agents, more

environmental controls could be added as a means to increase the model user's ability to

alter policies and procedures that could effect the model's outcome.

The graphical output created by the model could be improved. Java's new 3D

API might add some very interesting animation capabilities to the model's current

animation sequence. This would help with the model's presentation and give the model

more appeal to the average observer. The 3D API might also help make the summary

statistics more informative.

Expanding the model beyond the pilot inventory arena is another area for

improvement. By opening up the model to include other functional areas and/or the

entire Air Force personnel system, the model might be able to attack some larger scale

problems currently facing Air Force personnel analysts. Although keeping track of

thousands of agents might be possible on a computer, the animation would get very busy.

Therefore, some degree of aggregation would be necessary if such a large model were

pursued. Perhaps, instead of representing individual pilots, each agent could be a

49

representation of each rank within a given Air Force Specialty Code (AFSC). This would

allow the model user to see which AFSCs are more prone to retention problems and

which are not. Again, for this to work the parameters that make up the agents would

have to be greatly increased in order to include all the necessary information pertinent to

each particular AFSC.

3.2. Additional Areas of Study using Complex Adaptive Systems Theory

Complex adaptive systems theory is an incredibly fertile area of study. The

paradigm shift towards agent based models occurring in the simulation community would

definitely benefit from further research into complex adaptive systems and the whole

artificial life ideal. There is ample opportunity to examine both the theory and the

application of these cutting edge 'new sciences'.

From the complex adaptive systems theory viewpoint, there are many legacy

models that could very easily be converted to agent based models employing a complex

adaptive system. The results from these new CAS models could then be verified and

validated by being compared to their older counterparts. This would help to further

legitimize the notion of using complex adaptive systems theory in the future of

simulation and modeling.

Artificial life is also another very fertile area of study. Just defining what 'life' is

could involve years of study. Recreating life in the computer, as opposed to the test tube,

could be a very rewarding experience for any budding Operations Research scientist.

Creating agent based models that exhibit life-like qualities could lead to some very

interesting simulation exercises. The ability to recreate life-like behavior in a simulation

50

would greatly enhance the prescriptive and predictive capabilities of computer models

and would add much credibility to the entire modeling and simulation movement.

Cooperation with other sciences, such as biology, chemistry, physics, and

psychology, to name a few, would also help increase the use of agent based models. By

attacking long standing problems in these other sciences using a complex adaptive

systems theory approach, the agent-based paradigm could win allies in areas that

simulation never really dared to tread. In the end, the sky is the limit. There really is

nothing that cannot be modeled as a complex adaptive system. Even 'dumb' agents can

be created with little or no adaptive abilities. The key is to use agents, build from the

bottom-up, and let the system's emergent behavior be what the model produces. The

surprises that such agent-based, bottom-up models could produce may indeed shock

some, but in the end, the results will help shape the future of simulation and modeling as

we know it.

3.3. Concluding Remarks

A mere twenty years ago, scientists believed that simple systems behaved in

simple ways and that complex behavior implied complex systems at work. The

emergence of chaos theory and complex adaptive systems theory, however, has changed

all of this. As Gleick shows:

Now all that has changed. In the intervening twenty years,
physicists, mathematicians, biologists, and astronomers
have created an alternative set of ideas. Simple systems
give rise to complex behavior. Complex systems give rise
to simple behavior. And most important, the laws of
complexity hold universally, caring not at all for the details
of a system's constituent atoms. (Gleick, 1987:304)

51

Now complex systems can be modeled by simple agents, and simple models can lead to

complex behavior. Chaos theory has highlighted the 'gray' space between deterministic

behavior and completely random stochastic behavior. Chaos theory has lead to a

revolution in the sciences, one that has opened up doors to problems we never even

imagined solvable.

As for the scientists who pioneered the study of chaos, Gleick claims that:

Chaos was the set of ideas persuading all these scientists
that they were members of a shared enterprise. Physicist or
biologist or mathematician, they believed that simple,
deterministic systems could breed complexity; that systems
too complex for traditional mathematics could yet obey
simple laws; and that, whatever their particular field, their
task was to understand complexity itself. (Gleick, 1987:307)

The lesson learned here was one of simplification—simplify the model and let the model

surprise you with its results. Creating models that are dynamic in nature allows us once

and for all to see creation at work. By exploiting the notion of complex adaptive systems

theory, we are suddenly able to create simple models that can be used to explain the most

complex behaviors in the natural world. What we have found is that "nature forms

patterns. Some are orderly in space but disorderly in time, others orderly in time but

disorderly in space. Some patterns are fractal, exhibiting structures self-similar in scale.

Others give rise to steady states or oscillating ones" (Gleick, 1987:308). In the end,

though, these patterns give us insight into behaviors we never saw before. We gain

knowledge about our natural environment, and that knowledge allows us to grow and

adapt in our own complex adaptive system—life as we know it.

52

APPENDIX A - AN INTRODUCTION TO CHAOS, COMPLEX
ADAPTIVE SYSTEMS THEORY, AND ARTIFICIAL LIFE

A.l. Chaos Theory

A.l.l. The History and Development of Chaos Theory

As we approach the end of the millenium, we tend to reminisce about the great

things that were accomplished in the past century. In the sciences, we are now leaps and

bounds ahead of where we were only a few generations ago. Looking back on the past

100 years, we can observe that the human race has undergone three main revolutions in

the sciences (Gleick, 1987:6). The first revolution occurred when a brilliant German

scientist discovered that how we view all things in the universe is relative to the

observer's frame of reference. Einstein's theory of relativity changed how we viewed the

macrocosm. Next came the revolutionary ideas of quantum mechanics, which changed

the way we viewed the smallest entities in nature, the very building blocks upon which

everything else is created. And the third revolution, which many argue bridges the gap

between the previous two revolutions, is the emergence of the new sciences and chaos

theory.

Chaos theory completely changed the way in which humanity viewed nature. It

allowed us to see order where before we saw nothing but randomness, and it led us to see

random-like behavior that was actually very ordered. In a paradox of logic, chaos meant

that it was possible to derive order out of randomness, predictability out of stochastic

processes. It changed the way everything was viewed.

53

The history of chaos theory only goes back a few decades. James Gleick, in his

renowned text Chaos (see Gleick, 1987), presents an outstanding story about the

development of this fascinating science. According to him, it all started in the winter of

1961, a meteorologist named Edward Lorenz became the first person to identify, or

discover, what came to be known as chaos. Using his Royal McBee weather model,

Lorenz found that the model's output varied considerably by only changing ever so

slightly the data he used as inputs into the model—the changes were on digits in the

thousandths and ten-thousandths places of his inputs. Dubbed 'sensitivity to initial

conditions' (SIC for short), this became one of the calling cards of chaotic behavior.

Lorenz went on to experiment with a water-wheel which was in essence a mechanical

analogue of the rotating circle of convection found in any mixing process. Using some

basic differential equations, Lorenz was able to model the process on a computer and

create a three-dimensional graph of the system's behavior. What was born was the

Lorenz attractor, a two dimensional representation of which is presented by Susan

Durham in her paper "Chaos Theory for the Practical Military Mind" (see Figure 9:

Lorenz Attractor). The resulting graph displayed an image that stayed within certain

Figure 9: Lorenz Attractor

54

bounds, never running off the page, but also never repeating itself. It traced a strange, but

distinctive shape on the computer screen. To the observer, the Lorenz shape "signaled

pure disorder, since no point or pattern of points ever recurred. Yet it also signaled a new

kind of order" (Gleick, 1987:30). The theory of chaos was emerging.

In the 60's, the theory of chaos really didn't flourish as everyone would have

hoped. The scientific community was too caught up in deterministic pursuits to waste

any precious time or money on studying things that were random. Some brave souls,

however, did venture into this new arena, and it is because of them that chaos theory is

what it is today. Stephen Smale at the University of California at Berkley began

experimenting with nonlinear (chaotic) oscillators. Using the mathematical concept of

topology, he discovered a system that was locally unpredictable but globally stable. This

apparent contradiction of terms would take him years to figure out, but at least he was

heading in the right direction.

By the 70's, chaosologists, as they were referred to, were beginning to come out

of the closet. Robert May at the Institute for Advanced Study in Princeton began creating

bifurcation diagrams in 1971 using logistic equations. He plotted the level of one

parameter (along the horizontal axis) against the population of the system (along the

vertical axis). His bifurcation diagrams showed how changes in one parameter would

change the ultimate behavior of the system, and how after a certain point, what he called

the 'point of accumulation', periodicity in the system gave way to chaos where

fluctuations occurred that would suddenly settle into a periodic rhythm and then

disappear again. This startling discovery meant that chaos could emerge and disappear

55

again in the same system over time. This also meant that perhaps chaos could be

controlled in some manner. A startling notion in its own right.

That same year, David Ruelle at the Institut des Hautes Etudes Scientifiques used

phase space plots to capture all the dynamic information of a system in the trajectories of

phase space lines. His diagrams created 'strange attractors', areas where the trajectories

created by the phase space lines would be found. These strange attractors contained the

important qualities of being stable, low-dimensional, and nonperiodic. In essence, the

strange attractor was the graphical depiction of chaos. The problem now was to find such

behavior in the real world and not just in the theoretical world.

Later in the 1970's, a scientist at IBM helped make the first steps towards seeing

chaos in nature. Benoit Mandelbrot was unhappy with the integer based dimensional

system that humans had adopted. Nature did not work in strict integers, and he was

convinced there was something else out there. After countless experiments and much

research, he came up with the concept of fractals, or fractional dimensions. His new

geometry "mirrored a universe that was rough, not rounded, scabrous, not smooth"

(Gleick, 1987:94). He had pointed out how the pits and tangles that we assume to be

negligible are actually more than distorting blemishes, they are the keys to the essence of

the entity being viewed.

During this time the universality of chaos theory was also being uncovered.

Working at the Los Alamos National Laboratory, Mitchell Feigenbaum began examining

the ratio of convergence in the scaling patterns of chaotic systems. To his surprise, no

matter what system he looked at, he discovered that their convergence ratio was a

constant, which he dubbed the Feigenbaum constant, equal to 4.6692. Albert Libchaber

56

and Jean Maurer at the Ecole Normale Superieure confirmed the existence of this

constant in an experiment concerning the changing convection patterns in a small helium

box.

With Feigenbaum's discovery of a constant aspect shared by all chaotic systems

and Libchaber's experimental confirmation of this result, chaos theory really began to

take off. At Santa Cruz University in 1978, the dynamical systems group was formed as

Robert Shaw, Doyne Farmer, Norman Packard, and James Crutchfield began

experimenting with Lyapunov exponents as a means of describing strange attractors.

Discovering that all strange attractors had at least one positive Lyapunov exponent, this

group of men began seeing chaos in everything around them. Shaw went on to conduct

experiments that involved simple systems like a dripping water faucet. Instead of

modeling the complex physics of the system, he used only the data it produced and

embedded that data into a phase space plot to discover the system's strange attractor.

This breakthrough made chaotic concepts available to everyone, and the 1980's saw the

emergence of chaos theory in all kinds of arenas, from physiology and medicine to the

social sciences and economics. Shaw's results proved that an understanding of the

system was secondary to a means of producing data from the system. The system could

be regarded as a black box so long as it produced usable data which could then be

embedded into a phase space plot of enough dimensions. The ability to examine complex

systems with simple tools appealed to hundreds of scientists throughout the world. Chaos

theory finally got the recognition it deserved, and by the 1980's nearly everyone was

trying to find a way to apply it to their research.

57

A. 1.2. The Tenets of Chaos Theory

The concept of chaos still eludes many people. Everyone even remotely familiar

with systems behavior knows that some systems act in a very deterministic, periodic way

and others act in a completely stochastic, random way. But, the line between periodicity

and randomness is somewhat fuzzy. This fuzzy area is the arena of chaos. Chaotic

systems lie between periodic systems and random systems. They involve aspects of both,

but belong to neither. Chaotic systems exhibit behavior that never repeats itself, an

aspect of randomness, but patterns do evolve around attractors and long term trends are

predictable, an aspect of periodic behavior. So just what makes up a chaotic system?

Many different 'experts' have their own claims about what make a system

chaotic, but throughout the literature on chaos, the following tenets of chaos seem to

hold. All chaotic systems are:

• deterministic - they are not random;

• nonlinear - the whole is greater than the sum of the parts;

• sensitive to initial conditions - known as SIC;

• bounded - strange attractors create what are known as basins of
attraction which allow for the prediction of long-term trends;

• aperiodic - although long-term trends can be identified, short-term
predictions are all but impossible;

• controllable - a system can be driven in and out of chaos.

These conditions represent the necessary and sufficient conditions for a system to be

considered chaotic. Therefore, every chaotic system possesses these traits and every

systems that possesses these traits is chaotic.

58

Added to the above listed characteristics of chaotic systems, there are also a

number traits that chaotic systems have in common. In his book Chaos Theory, Glenn

James points out the following observable features common to all chaotic systems

(James, 1996:38):

• transient and limit dynamics - the system is constantly changing, but
these changes occur in a limited arena (i.e. the attractor's basin of
attraction);

• parameters - the system has control knobs that will alter the system's
dynamics;

• definite transitions to and from chaotic behavior - the system exhibits
the ability to jump in and out of chaos;

• attractors - the system's attractors often possess fractal dimensions.

What at first was considered random noise in the data has now been determined to

be the existence of chaotic behavior in the system. This has made for revelations in

countless arenas of the scientific community. As Gottfried Mayer-Kress points out, "the

primary feature distinguishing chaotic from random behavior is the presence of an

attractor that outlines the dynamics towards which a system will evolve" (quoted in

James, 1996:39). The existence of such an attractor lends hope to the notion that the

dynamics of a chaotic system are in fact repeatable. Despite the fact that chaotic systems

are very sensitive to initial conditions and that neighboring trajectories actually repel each

other, the trajectories of a chaotic system confine themselves to some limited region of

phase space. This bounded region has minimum and maximum parameter values beyond

which the trajectories will not wander unless perturbed by some outside force. Strange

attractors also possess the mixing property which states that trajectories in phase space

59

will repeatedly pass near every point on the attractor. This means that strange attractors

are efficient mixers.

The strange attractor for a chaotic system forms a basin of attraction as all the

transient states in the system evolve toward a single attractor. The basin then comes to

represent all the possible initial states that ultimately exhibit the same limit dynamics on

the attractor. As stated above, because of the system's sensitivity to initial conditions, the

precise state of the system at any given time cannot be predicted. But, because the

attractor draws trajectories towards itself, we do know what the trends in the dynamics of

the system will be. Thus, an attractor shows not only distributions of system states, but it

also indicates directional information about how the system tends to change from its

current state. As a result, when an attractor is constructed, an image of the system's

global dynamics (without appealing to any model) is created. This reconstruction allows

us to predict (very) short-term trajectories and overall long-term trends. We can also

perform pattern recognition exercises and carry out sensitivity analysis due to the

existence of a strange attractor.

The presence of a strange attractor means that chaotic flow in the system settles

into a boundary region. The chaotic flow in the system generates time intervals with no

periodicity and no apparent pattern. Thanks to the strange attractor, though, the chaotic

return map does not simply fill all the available space with a random smear of points.

The strange attractor ensures that there is some rough (often fractal) boundary confining

all the chaotic points, even if the points appear to fill the region in an erratic,

unpredictable way.

60

All chaotic systems have a key control parameter that allows the regulation of the

amount of energy in the system. Chaotic behavior appears when the system has so much

energy that there is insufficient time for it to relax and recover before the next event

occurs. Since the transition to more complicated behavior can occur at predictable

parameter values (aka knob settings), we can expect specific behaviors in a system that

displays periodic behavior. We can also expect to see higher periods and eventually

chaotic behavior in the system as additional energy is added. In some cases we may even

be able to forecast the parameter values that permit these transitions from periodicity to

chaos. This leads to the notion that chaos can be controlled. Just as perturbing a stable

system can induce chaos, perturbing a chaotic system can stabilize the system's behavior.

This alone makes the study of chaos a worth-while cause, since chaotic behavior can be

both advantageous and disadvantageous, depending on the circumstances surrounding the

system in question.

Lastly, the idea of feedback and nonlinearity lends chaos theory to a plethora of

natural systems. Nature, contrary to popular belief, is not strictly linear. In our lack of

diligence, humans often force our linear models on nature's nonlinear reality. As such,

chaos has been hidden for centuries in what was considered experimental error or noise.

Feedback in a system has only recently been taken advantage of, and thanks to chaos

theory, there is now a great mechanism for examining just that principle. Feedback

means that a system has the ability to correct itself, either in a positive way or a negative

way. This idea leads to learning on the system's part and allows us to examine the

possibilities of intelligent systems. The great potential dynamics that can be generated by

61

imposing feedback on a system will lend a lot to the study of many natural occurrences

and open many new doors to scientific understanding.

One of the greatest things about chaos theory is that it can be applied to a system

without the need to know any of the underlying physical relationships of the internal

make-up of the system. As such, even very complicated systems can be examined using

chaos theory, so long as the system produces a reliable, steady stream of data. The uses

of chaos theory are unlimited, and as James Gleick puts it so eloquently, "now that

science is looking, chaos seems to be everywhere" (Gleick, 1987:5).

A. 1.3. The Uses and Applications of Chaos Theory

Looking at what spawned the whole notion of chaos, namely the investigation of

turbulence, it is easy to see that any system involving turbulence involves chaos to some

degree. Just a fraction of the systems that involve turbulent behavior include those

pertaining to:

• air flows over wings (Durham, 1997:34);

• water flows along the bow of a ship (Durham, 1997:34);

• atmospheric turbulence and its effect on electronic imaging (Durham, 1997:35);

• turbulence encountered in the mixing of fluids (Durham, 1997:35);

• lasers themselves have nonlinear fluctuations that are turbulent (Durham, 1997:35).

Any system in which vibrations are an important aspect of the effective use of the

entity are havens for chaos. Some systems that might involve chaotically behaving

vibrations include:

• electronic or mechanical vibrations in computer equipment (Durham, 1997:36);

62

• engine vibrations (James, 1996:73);

• helicopter vibrations (James, 1996:73).

Outside the realm of turbulence or vibrating systems, there are still countless

examples of systems in which an understanding of chaos theory can be priceless. Just a

few of the systems that exhibit chaotic behavior include:

• systems in the human body - especially the beating of the heart (Durham, 1997:36);

• transient phenomena such as waves and their effects on the stability of
ships (Durham, 1997:36);

• systems made of electronic circuits - feedback in audio and electrical
systems can drive the system in and out of chaos (Durham, 1997:36);

• systems in which efficient mixing is required - as stated above, strange
attractors have the property of being efficient mixers (James, 1996:73-75);

• flickering lasers or any other pulsating electro-magnetic energy source
(James, 1996:73-75).

Taking a closer look at the fractal nature of chaotic systems, the use of fractal

technology can be exploited in such arenas as image compression and pattern recognition

(James, 1996:84-86). David Nicholls, in his article "What Does Chaos Theory Mean for

Warfare", points out that chaos theory can be used to define the minimum number of

variables required to create a model of warfare (Nicholls, 1994:53). He claims that the

fractal dimension of a system is roughly equivalent to the number of variables needed to

characterize the system. Therefore, the fractal nature of chaotic systems may allow

relatively small and simple models to accurately simulate complex systems such as the

modern battlefield.

Chaos theory's tenet of sensitivity to initial conditions, Nicholls points out, could

also help modelers determine the predictive confidence with which they may use their

63

models. If small changes in the initial conditions produce small variations in the system,

then predictions can be counted on more, but if the same small changes in initial

conditions produce large variations in the system, then predictions should be suspect.

Chaos theory's applications to the military sciences are also being exploited in

many other arenas. Nicholls claims that his process of altering initial conditions will help

identify centers of gravity in the enemy's system. He also describes how chaos theory

can be used to identify sources of nonlinearity in warfare, among which might include:

• feedback loops;

• the psychology associated with interpreting enemy actions;

• the processes that are by themselves inherently nonlinear;

• Clausewitzian fog and friction;

• the process of decision making itself.

The notion of chaos theory explaining uncertainty in warfare actually goes all the

way back to the Clausewitzian idea of friction. In his article "Clausewitz, Nonlinearity,

and the Unpredictability of War", Alan Beyerchen shows how Clausewitz unintentionally

used the concepts of chaos theory to explain the unpredictability inherent in warfare

(Beyerchen, 1992/1993:90). Beyerchen claims that Clausewitz just didn't possess the

vocabulary to explain his ideas in the terms of chaos theory, and therefore called his

uncertainty the fog and friction of war. Clausewitz's theory of the trinity of war is also

based on the idea of a chaotic system. The trinity of war, representing the violence of the

masses, the chance opportunities made available to the military to defeat the enemy, and

the reasoning abilities of the government to avoid our evolution into total war, is always

in flux between three opposing poles of attraction. This state of flux exhibits

64

characteristically chaotic behavior. Added to this, the nonlinearity of war itself makes it

a very chaotic system.

Wayne Hughes, in his article "Uncertainty in Combat" shows how the fruits of

chaos theory in combat are that "macro patterns [are] seen amidst micro unpredictability"

(Hughes, 1994:51). He shows that for a commanding general:

A major part of skill and expertise is recognizing and
avoiding situations dominated by uncertainty or chance
when your knowledge is superior, and creating
opportunities for uncertainty for the enemy when your
knowledge is inferior. (Hughes, 1994:50)

Understanding that uncertainty cannot be eliminated from combat, Hughes espouses a

strategy for learning how to deal with it and how to exploit it. He claims that a

commander's best defense against uncertainty is to pursue a "recipe of breadth, not depth,

of analysis" (Hughes, 1994:52). In doing so, a commander learns to recognize chaotic

behavior in both his systems and the enemy's systems, and through experience in dealing

with it in the past, he knows what to do to exploit it for his own use.

Piggy-backing on this idea, John McDonald, in his article "Exploiting Battlespace

Transparency - Operating Inside an Opponent's Decision Cycle" claims that for a

commander to be victorious on the battlefield he must endeavor to get into his enemy's

observe-orient-decide-act (OODA) cycle and induce chaos into it (McDonald, 1997).

McDonald shows that the way to do this is to make your decisions faster and better than

your enemy's. The commander must also learn to avoid uncertainty in his decision cycle

and employ techniques to induce it in his enemy's, therefore causing his enemy's systems

to act chaotically.

65

Lastly, James presents a multitude of examples through which the exploitation of

chaos theory can help in the military setting (James, 1996:79-84). Among these are:

• induce chaotic behavior in the enemy's stable systems;

• reduce and/or eliminate chaos in our own chaotic behaving systems;

• exploit chaos theory in our decision making tools;

• use chaos theory as a means for recognizing patterns;

• employ chaos in feedback systems - 'ping' the enemy's system and see
how it responds.

Durham, citing Jim Lesurf s Chaos on the Circuit Board, also includes one interesting use

of chaos theory for the military specialist—encoding data to make it sound like 'random'

noise (Durham, 1997:36).

A.2. Complex Adaptive Systems Theory

A.2.1. The History and Development of Complex Adaptive Systems Theory

As the use of chaos theory grew to include many other branches of science, some

practitioners began to see extensions of its use. If complex systems could be understood

by just looking at the data produced, why not build simple models to simulate these

complex systems. Nature was full of these types of simple agents that interacted in very

complex manners. Birds flocking, flies swarming, or schools offish swimming in the

ocean are just a few such examples. As it turned out, making these models was not as

complicated as one would expect and soon complex systems theory would lead to an

even better understanding of the natural world.

66

In reality, complex adaptive systems theory predated the development of chaos

theory. Famed scientist John Von Neumann played with agent-based simulations long

before Lorenz even thought about examining chaos. However, the advent of chaos

theory, coupled with its wide-spread acceptance as a viable science, has spurned new

interest in complex adaptive systems theory. In essence, the discovery of chaos theory

has led to a greater understanding of complex adaptive systems theory. Chaos theory

presented researchers with insights into complex adaptive systems theory that they never

had, or could have had before.

Complex adaptive systems seemed to bring order and chaos into balance. It was

at this edge of chaos, as M. Mitchell Waldrop points out, that the science of complexity

emerged:

In the past two decades, chaos theory has shaken science to
its foundations with the realization that very simple
dynamical rules can give rise to extraordinarily intricate
behavior; witness the endlessly detailed beauty of fractals,
or the foaming turbulence of a river. And yet chaos by
itself doesn't explain the structure, the coherence, the self-
organizing cohesiveness of complex systems. Instead, all
these complex systems have somehow acquired the ability
to bring order and chaos into a special kind of balance.
This balance point—often called the edge of chaos—is
where the components of a system never quite lock into
place, and yet never quite dissolve into turbulence, either.
The edge of chaos is where life has enough stability to
sustain itself and enough creativity to deserve the name of
life. The edge of chaos is where new ideas and innovative
genotypes are forever nibbling away at the edges of the
status quo, and where even the most entrenched old guard
will eventually be overthrown. (Waldrop, 1992:11-12)

67

Stuart Kauffman adds that "the fate of all complex adaptive systems in the biosphere—

from single cells to economies—is to evolve to a natural state between order and chaos, a

grand compromise between structure and surprise" (Kauffman, 1995:15).

Taking the idea of strange attractors from chaos theory, it came as no surprise to

find that complex adaptive systems tend to have strange attractors. Looking again at the

reality of nature, systems with strange attractors are the rule, not the exception. It's just

that science has always called their behavior random when in fact there was order hidden

underneath. Exploiting the ideas of chaos and complexity together finally allowed us to

uncover some degree ofthat hidden order.

One of the greatest advantages about using complex adaptive systems theory to

model behavior was that it was based on a bottom-up approach to modeling, as opposed

to the top-down approach so common in modeling over the past few decades. But, as

Waldrop points out, "after three hundred years of dissecting everything into molecules

and atoms and nuclei and quarks, they finally seemed to be turning that process inside

out. Instead of looking for the simplest pieces possible, they were starting to look at how

those pieces go together into complex wholes" (Waldrop, 1992:16). As JohnCasti

states, "instead of dictating the rules of thought, a Bottom Up researcher sees whatever

rules of thought the machine embodies as emerging form the reconfiguration of the

pattern connecting the many processors as the machine learns to survive in its

environment" (Casti, 1994:159). This then allows the complex adaptive system to learn

and adapt to its environment. Based on only a small set of rules, the system is able to

cope with an ever changing environment and learn how to deal with adversity—

something that no other model to date had been able to do.

68

The science of complexity was changing the way everyone was looking at nature.

It was a complete paradigm shift in the way models were built. It was a revolution in the

sciences, one that began according to Brian Arthur, the first time someone said, "Hey, I

can start with this amazingly simple system, and look—it gives rise to these immensely

complicated and unpredictable consequences" (quoted in Waldrop, 1992:329)

The center for most, if not all of the research that has gone into the sciences of

complexity is arguably located in Santa Fe New Mexico. Established in May of 1984,

the Santa Fe Institute was founded as a "small, private organization set up by the

physicist Murray Gell-Mann and others to study aspects of complex systems, by which

they meant everything from condensed-matter physics to society as a whole—anything

with lots of strongly interacting parts" (Waldrop, 1992:53). A think tank set up initially

by grants from private industries, primarily from the financial sectors of the community,

the Santa Fe Institute (SFI) was tasked originally with creating better models of the

economy. The goal was to make money, but soon its founders and members saw a much

bigger catch. They hoped and dreamed of creating a whole new science, one that would

draw all the other sciences together. As Waldrop so eloquently puts it:

They [members of the Santa Fe Institute] all share the
vision of an underlying unity, a common theoretical
framework for complexity that would illuminate nature and
humankind alike. They believe that they have in hand the
mathematical tools to create such a framework, drawing
from the past twenty years of intellectual ferment in such
fields as neural networks, ecology, artificial intelligence,
and chaos theory. They believe that their application of
these ideas is allowing them to understand the spontaneous,
self-organizing dynamics of the world in a way that no one
ever has before—with the potential for immense impact on
the conduct of economics, business, and even politics.
They believe that they are forging the first rigorous

69

alternative to the kind of linear, reductionist thinking that
has dominated science since the time of Newton—and that
has now gone about as far as it can go in addressing the
problems of our modern world. They believe they are
creating, in the words of Santa Fe Institute founder George
Cowan, "the sciences of the twenty-first century" (Waldrop,
1992:12-13).

Probably the reason for the length of time it took for the science of complexity to

really take off can be attributed to the immense amount of computational power needed

to effectively analyze complex adaptive systems. The power of the computer, along with

the relative inexpensiveness of said computing power especially in the past 15 years,

definitely helped open the doors to studying complexity. In the past, solving

mathematical equations by hand limited scientists to three or four linearly related

variables. But computers do not differentiate much between linear and nonlinear

systems. Their faster processors allow for millions, if not billions, of calculations per

minute. Added to this, computer graphics allow for the dynamic display of data in

colorful, visually appealing graphs. Finally, the easy access to personal computers

allowed everyone to use the power of computers anywhere they wanted to. The recent

proliferation of super-computers, especially at universities and colleges throughout the

country, also allowed for the investigation of really big problems.

What makes computers great for studying complex adaptive systems is not just

their mathematical prowess, but also their record-keeping abilities. They are world-class

bookkeeping machines, and, as Waldrop points out, "properly programmed, computers

could become entire, self-contained worlds, which scientists could explore in ways that

vastly enriched their understanding of the real world" (Waldrop, 1992:63). The whole

notion of using complex adaptive systems theory to create simulations allowed scientists

70

to start tackling very complex problems they would not have dared even think about in

the past.

The idea of nonlinear dynamics introduced by chaos theory also played very well

into the science of complexity. With computers able to easily tackle complex

mathematics, the need for strict linearity assumptions dwindled away quickly. Since

computers could handle nonlinear problems with ease, the door was opened to discarding

all the linearly imposed assumptions that were required in the hand calculation days.

Nonlinear dynamics were born, and with it the disturbing notion that the whole could

really be greater than the sum of the parts became a reality. Chaos theory introduced this

synergistic idea, but complexity exploited it. Complex behaviors were arising when very

simple systems followed nonlinear rules. The complexity seemed to emerge from

simplicity.

In the earliest days of the Santa Fe Institute, one of the first proponents of the use

of complex adaptive systems theory was Brian Arthur. An economics professor from

Berkley, Arthur had a big problem with the theories espoused by classical economists

who "seemed to see human society as a perfectly oiled machine governed by the Invisible

Hand of Adam Smith" (Waldrop, 1992:23). While classical economists believed in

equilibrium and the idea that tiny (and even not-so-tiny) imbalances die away, Arthur

believed that the economy was a living system—like an organism. To him, the economy

was "an entire sprawling set of self-consistent patterns that formed and evolved and

changed in response to the outside world" (Waldrop, 1992:31). Arthur saw an economy

where tiny initial differences produced enormously different results. The simple

dynamics of supply and demand led to astonishingly complex behavior patterns.

71

Following the ideas of complex adaptive systems, Arthur saw the economy as a

collection of constantly interacting agents. Again, going against the grain of the classical

economists, Arthur pictured his economic agents as smart, but not perfect. The classical

economic idea of bounded rationality—that all agents act perfectly rationally on perfectly

accurate information—seemed ludicrous to Arthur. Additionally, the notion of bounded

rationality was completely unrealistic and in-human, hence classical economic theory did

nothing to accurately explain, let alone predict the economy. Using the ideas of complex

adaptive systems theory, Arthur built economic agents that were smart, but not perfect.

He allowed his agents to learn from experience garnered from their interactions with each

other and their environment. He sought to recreate the economy and allow free market

principles, like bartering and the use of money, to emerge from a group of fairly simple

agents. The complex adaptive system economic agents did not have to be perfect. They

could dynamically change their behavior as they learned from their experiences. They

would be allowed to act more like individuals in a real economy would act. In short, an

economic model based on complex adaptive systems theory might finally help explain

the behavior of the economy as it really was, not as the classical economists thought it

should be.

The adaptive agents employed by Arthur operated in an inductive mode. They

were forced to reason an internal model from fragmentary data. Instead of deducing

answers by ripping apart the system into its smaller parts, the agents induced answers by

combining the parts of the puzzle they had and then taking a best guess at what to do with

the information they had. The entire notion of induction fascinated Arthur:

72

Here you could think about doing economics where the
problem facing the economic agent was not even well
defined, where the environment is not well defined, where
the environment might be changing, where the changes
were totally unknown. And, of course, you just had to
think for about a tenth of a second to realize, that's what
life is all about. People routinely make decisions in
contexts that are not well defined, without even realizing it.
You muddle through, you adapt ideas, you copy, you try
what worked in the past, you try out things. (Waldrop,
1992:254)

This drastic shift also helped make the complex adaptive systems approach to modeling

the economy, or any complex system, more realistic. Additionally, it allowed for the

formation of models built using imperfect information. Perfect information was not

necessary for induction to occur, but it was a requirement of deduction.

The Santa Fe approach to economics became the first of many paradigm shifts in

the sciences that would result from applying the ideas of complex adaptive systems

theory to practice. Unlike the static and unrealistic model of the economy proposed by

the classical economists, the Santa Fe approach emphasized increasing returns (the whole

is greater than the sum of the parts), bounded rationality (agents weren't perfect), and the

dynamics of evolution and learning. The models created were psychologically realistic

and treated the economy as something organic, adaptive, surprising, and alive. They

talked about the economy as a dynamic, ever-changing system poised at the edge of

chaos. Gone were the days of static equilibrium, and here to stay were the days of reality

and complexity.

Like any revolutionary idea, Arthur's ideas came under some heavy criticism.

Among the strongest was the fact that because of the chaotic nature of complex adaptive

systems, the notion of prediction was all but impossible. Arthur, however, cited the

73

proponents of chaos theory and their answer to this dilemma by pointing out that

prediction wasn't the goal, explanation was: "Prediction isn't the essence of science. The

essence is comprehension and explanation. And that's precisely what Santa Fe could

hope to do with economics and other social sciences" (Waldrop, 1992:255). So even

though Arthur's ideas made prediction essentially impossible, they did explain the nature

of the economy and led to a model that was realistic and based on the true system.

Sacrificing prediction allowed him to concentrate on explanation. In reality, the sacrifice

wasn't really that big since classical economic models are not good prediction tools and

poorly explain how the economy really works. In the end, the complex adaptive systems

theory approach to modeling the economy was the better approach.

Once the scientific community understood that the use of complex adaptive

systems theory led to models that contained lots of explanatory power and not many

predictive capabilities, they began to see the potential for its use in a lot of different

arenas. Arthur's work in the field of economics was only one, albeit the first, such

venture into the realm of complex adaptive systems theory thought. The door was now

open to explore the use of complex adaptive systems in a variety of different arenas.

At about the same time that Brian Arthur was working on economic models that

employed complex adaptive systems theory, John Holland was refining the definition of

what made up the characteristics of a generic complex adaptive system. A professor of

Electrical Engineering and Computer Science at the University of Michigan, Holland had

made a name for himself as the father of genetic algorithm. For years he had sought a

means to put his genetic algorithms to work, and with the advent of complex adaptive

systems theory, he saw his opening. Heavily influenced by biology and the works of

74

Darwin, Holland saw complex adaptive systems theory as a great way to explain the

theory of evolution. But first he would have to solidify some of the general

characteristics shared by all complex adaptive systems.

To Holland, all complex adaptive systems should have a set of shared

characteristics, rules of play. He decided to set out and work on defining these rules so as

to bring some consistency to the science of complexity. First and foremost, a complex

adaptive system had to be composed of a network of autonomous agents that acted in

parallel. These agents acted in a system whose control was dispersed among the actual

agents; there were no God-like oracles running the system. This allowed for system-wide

behavior to emerge from the interactions agents had with each other and with their

environment.

Although Holland's agents were autonomous and self-governing, he also realized

that different levels of organization were required for the system to be able to evolve to a

higher state. He claimed that "a complex adaptive system has many levels of

organization, with agents at any one level serving as the building blocks for agents at a

higher level" (Waldrop, 1992:145). These building blocks were constantly being revised

and rearranged based on the experiences the agents gained from their interactions with

each other and their environment. In a manner of speaking, the agents organized

themselves based on the knowledge they acquired by living in the system.

Lastly, Holland's agents used the notion of anticipation of the future as a means to

drive their immediate behaviors. He developed the idea of internal models as a basis for

making predictions about the future. These internal models are in a state of constant and

active evolution in which learning takes place. Employing cycles of prediction and

75

feedback, the agents learn from their environment. They make anticipations based on

their internal models and learn, or adapt, to the feedback they receive from their

environment. As a result, they develop rules of conduct that help them interact with each

other and their environment. These rules, Holland postulated, are organized into

hierarchies which are then further organized into higher levels of a hierarchy and so on.

This was a prime place for his genetic algorithms to come in to play and for evolution to

begin.

Holland's ideas meant that the agents of a complex adaptive system could fill

their own niches. He claimed that niches were present in all types of complex adaptive

systems. Furthermore, the very act of filling one niche opens up a number of other

niches. This all taken together helped him postulate the idea that a complex adaptive

system never reaches equilibrium:

[because of the niche idea above, it] means that it's
essentially meaningless to talk about a complex adaptive
system being in equilibrium: the system can never get there.
It is always unfolding, always in transition. In fact, if the
system ever does reach equilibrium, it isn't just stable. It's
dead... There's no point in imagining that the agents in the
system can ever "optimize" their fitness, or their utility, or
whatever. The space of possibilities is too vast; they have
no practical way of finding the optimum. The most they can
ever do is to change and improve themselves relative to
what the other agents are doing. In short, complex adaptive
systems are characterized by perpetual novelty. Multiple
agents, building blocks, internal models, perpetual
novelty—taking all this together, said Holland, it's no
wonder that complex adaptive systems were so hard to
analyze with standard mathematics. Most of the
conventional techniques like calculus or linear analysis are
very well suited to describe unchanging particles moving in
a fixed environment. But to really get a deep understanding
of the economy, or complex adaptive systems in general,
what you need are mathematics and computer simulation

76

techniques that emphasize internal models, the emergence of
new building blocks, and the rich web of interactions
between multiple agents. (Waldrop, 1992:147)

In the end, however,

what captivated him [Holland] wasn't that science allowed
you to reduce everything in the universe to a few simple
laws. It was just the opposite: that science showed you
how a few simple laws could produce the enormously rich
behavior of the world. (Waldrop, 1992:153)

And this fact is what made the science of complexity so appealing to so many others.

Aside from the few characteristics described above by Holland, anyone could use

complex adaptive systems theory to model a dynamic system. And that is just what

started to happen. All over the world, scientists began using the ideas found in complex

adaptive systems theory to form their own complex adaptive systems based on simple

rules. And to everyone's astonishment, these complex adaptive systems helped start

explaining things accurately that were being taken for granted in the natural world.

It did not take long for the theory of complex adaptive systems to enter into the

mainstream. Once the tenets of the theory were laid out, people from all over society, not

just from the sciences, experimented with it. One of these outsiders was Craig Reynolds.

A computer programmer and animation specialist for the Symbolics Corporation of Los

Angeles California, Reynolds saw the theory of complex adaptive systems as a means to

add life to his animation. Trying for years to re-create the flocking behavior of birds in

flight, he saw complex adaptive systems theory as the solution he had been looking for.

Dubbing his computer generated agents boids, he made three simple rules by which each

and every boid was required to live by:

1. separation - maintain a minimum distance from other objects in the

77

environment, including other boids;

2. alignment - try to match velocities with boids in its neighborhood;

3. cohesion - try to move toward the perceived center of mass of the
boids in its neighborhood.

After defining these simple rules for each boid, the system was then released to act on its

own. What happened next was nothing short of amazing. These simple rules generated

the flocking behavior exhibited daily by birds in the natural world:

What was striking about these rules was that none of them
said, "Form a flock." Quite the opposite: the rules were
entirely local, referring only to what an individual boid
could see and do in its own vicinity. If a flock was going to
form at all, it would have to do so from the bottom up, as
an emergent phenomenon. And yet flocks did form, every
time. Reynolds could start his simulation with boids
scattered around the computer screen completely at
random, and they would spontaneously collect themselves
into a flock that could fly around obstacles in a very fluid
and natural manner. (Waldrop, 1992:241-242)

Reynolds simple example was the coup the complex adaptive systems community

had been waiting for. Here was an incredibly simple system that created very complex

behavior, behavior that to date had not really been successfully recreated in a computer

model. Reynolds had done in a few lines of code what computer scientists could not do

with pages of complicated algorithms. Viewing Reynolds boids, even the casual observer

could recognize the emergent behavior it displayed. And the greatest thing about his

program was that:

Instead of writing global, top-down specifications for how
the flock should behave, or telling his creatures to follow the
lead of one Boss Boid, Reynolds had used only the three
simple rules of local, boid-to-boid interaction. And it was
precisely that locality that allowed his flock to adapt to
changing conditions so organically. The rules always

78

tended to pull the boids together, in somewhat the same way
that Adam Smith's Invisible Hand tends to pull supply into
balance with demand. But just as in the economy, the
tendency to converge was only a tendency, the result of each
boid reacting to what the other boids were doing in its
immediate neighborhood. So when a flock encountered an
obstacle such as a pillar, it had no trouble splitting apart and
flowing to either side as each boid did its own thing. Try
doing that with a single set of top-level rules, said Langten.
The system would be impossibly cumbersome and
complicated, with the rules telling each boid precisely what
to do in every conceivable situation. In fact, he had seen
simulations like that; they usually ended up looking jerky
and unnatural, more like an animated cartoon than like
animated life. And besides, he said, since it's effectively
impossible to cover every conceivable situation, top-down
systems are forever running into combinations of events
they don't know how to handle. They tend to be touchy and
fragile, and they all too often grind to a halt in a dither of
indecision. (Waldrop, 1992:279)

To Brian Arthur this meant that "if Reynolds could produce startlingly realistic flocking

behavior with just three simple rules, then it was at least conceivable that a computer full

of well-designed adaptive agents might produce startlingly realistic economic behavior"

(Waldrop, 1992:243). Reynolds success with boids seemed to finally make the notion of

complex adaptive systems available for commercial use, but the best was yet to come.

In 1989, a small computer programming firm from Silicon Valley began

experimenting with complex adaptive systems in their games. The Maxis Company of

Orinda California created the program SimCity that year, and it became an instant

success. Based on the idea of building a city from the ground up, SimCity employed

complex adaptive systems theory to help generate the city. The simulation involved the

player taking on the role of a mayor who tried to build his city to prosperity in the midst

of crime, pollution, traffic congestion, and tax revolts. Considered just a game, it

79

ironically drew the attention of real city planners who actually started using it in their city

designs. To Holland, it was proof that non-scientists could use a model to test out ideas

before actually implementing the ideas in the real world. A computer model based on

complex adaptive systems theory seemed to be the best way to go, especially since it

required defining only a (relatively) few simple rules and its output was incredibly

realistic.

As the Santa Fe Institute entered the 1990's it seemed as if the notion of complex

adaptive systems theory had finally caught on. But one more piece of the puzzle would

be added before everyone was happy with the result, and that piece would be contributed

by Chris Langton, a doctoral student at the University of Michigan working with

Holland. Langton, a computer scientist, decided to take the notion of artificial

intelligence one step further than it had been taken in the past. Instead of modeling just

the brain and how it 'created' intelligence, he decided to pursue the notion of artificial

life and model the entire organism. Langton's vehicle of choice for this great endeavor

was complex adaptive systems theory.

Langton felt comfortable considering living systems machines, but to him they

were very different from what most people considered machines:

Living systems are machines, all right, but machines with a
very different kind of organization from the ones we're
used to. Instead of being designed from the top down, the
way a human engineer would do it, living systems always
seem to emerge from the bottom up, from a population of
much simpler systems. (Waldrop, 1992:278)

This whole idea made it possible for emergence to happen. Complex behavior doesn't

need to come from complex roots, it can emerge from strikingly simple components. To

80

Langton, life may indeed have been a kind of biochemical machine. But to animate such

a machine "is not to bring life to a machine; rather, it is to organize a population of

machines in such a way that their interacting dynamics are 'alive'" (Waldrop, 1992:280).

The complexity and the 'being alive' would therefore be a property of the organization of

entities, not the entities themselves. This all fit perfectly into the whole realm of complex

adaptive systems theory, giving Langton the means for creating artificial life.

Langton, following in the footsteps of his mentor John Holland, saw a great need

to standardize the whole notion of artificial life. As such, he established the criteria he

felt necessary to achieve lifelike behavior in a simulated environment. He decided,

thanks to complex adaptive systems theory, that it would be best to simulate populations

of simple units instead of one big complex unit. This would mean that each agent would

possess local control over itself and not require a global God-like oracle directing the

living process. Decentralized control and the autonomy of the agents would allow

behavior to emerge from the bottom-up instead of being specified from the top-down.

Therefore life would evolve and adapt to its environment. There would be no real end-

result, because the system would keep adapting to its ever changing environment.

Therefore the focus would be on ongoing behavior instead of the final result. All these

ideas fit well into the reality of life, living systems are comprised of autonomous agents

that act and react based on feedback from their interactions with each other and their

environment. Life does not reach an equilibrium state and settle down, it is constantly

changing and adapting to the changes going on around it. Life is a complex adaptive

system, and Langton felt that he might just be able to recreate it (someday) in an

elaborate enough simulation.

81

Preliminary experiments into the creation of artificial life simulations led Langton

to another startling discovery. It seemed that all complex adaptive systems built to

simulate artificial life were what he called 'on the edge of chaos'. The edge of chaos was

that precarious balance between the forces of order and the forces of disorder. It was

here that life was possible, and it was here that Langton knew he would find the key to

recreating it on a computer. According to Langton, living at the edge of chaos meant that

the system being simulated had to consist of a dense web of feedbacks and regulations,

while at the same time leaving plenty of room for creativity, change, and the ability to

respond to new conditions. The problem was determining how a system got to the edge

of chaos, how it kept itself there, and what does it actually do there. Although these

questions were still unanswered, he knew the edge of chaos was where he would find his

artificial life. For it was at the edge of chaos that the system would act more like a fluid

than like a rigid solid. It was there that it would have the ability to adapt and overcome

diversity. He also knew that a system would get to the edge of chaos through adaptation,

and that artificial life systems would want to stay at the edge of chaos so that they could

continue to adapt themselves. The quest now became how to find that edge of chaos.

Having developed the science of complexity and grounded it well within the

tenets of complex adaptive systems theory, the Santa Fe Institute accomplished many of

its initial goals. Complex adaptive systems were implemented in a wide range of

endeavors and the sciences were beginning to see its benefits. The commercial sector

also was beginning to draw on complex adaptive systems theory for help in solving

problems and creating better methods for evaluating particularly difficult situations. The

Santa Fe Institute had done its job in establishing complexity as a science. Its next task

82

became one of application. Scientists from throughout the world sought fellowships

there in the hopes of using complex adaptive systems theory and applying it to their own

research. The Santa Fe Institute had become the Mecca of complexity, the Jerusalem of

the science of complex systems. It was becoming the object of many scientific

pilgrimages.

A.2.2. The Tenets of Complex Adaptive Systems Theory

What differentiates complex adaptive systems (CAS) from other modeling

systems is that the actual modeling is done at the most basic agent's level as opposed to

modeling at the highest overall or global level. It is the interactions of the agents of a

complex adaptive system that provide the information to the modeler, not the actual

physical make-up of the model's results. Since the interactions of the agents in a

complex adaptive system are governed by the anticipations engendered by learning and

long-term adaptation, agent-based simulations of complex systems are predicated on the

idea that the global behavior of a complex system derives entirely from the low-level

interactions among its constituent agents. By simulating an individual constituent of a

complex system as an adaptable agent, one can model a real system as an artificial world

populated by interacting processes among these so-called agents. This agent-based

approach makes modeling very easy and the behavior exhibited by the models very

compelling.

The decentralized self-organization portrayed by many such complex adaptive

systems is what makes their use so wide-spread. In essence, the modeler is creating

artificial life, breathing existence into simple agents by providing them with rules of

behavior. The modeler then removes himself from the system and lets the agents do the

83

rest of the work, observing the behavior that emerges as a result of their interactions with

each other and their environment.

The emergent behavior of the CAS provides a means for answering 'what-if type

questions and pursuing varying alternatives in environmental factors. Basically, complex

adaptive systems theory allows the modeler to play God and create life and then add

circumstances that will effect the interactions of the life he has created. The modeler can

then view how his creation deals with the circumstances thrown at it.

John Holland is arguably considered the father of the entire complex adaptive

systems approach to modeling. In his book Hidden Order, he sets forth the basic

properties and mechanisms by which all complex adaptive systems should be built. The

four properties, and sub-properties, he describes are:

• aggregation - aggregate simple things into categories and then treat them
as equivalent;

• nonlinearity - the whole is more than the sum of the parts;

• flows - flows through a network vary over time as nodes and
connections appear and disappear as the agents adapt or fail to adapt to
the changing environment resulting in:

- the multiplier (aka amplifier) effect - creates chain reactions;
- the recycling effect - preserves resources;

• diversity - each kind of agent fills a niche
- convergence - if an agent filling a unique niche is removed from

the system, some other agent will adapt to fill that niche.

The three mechanisms Holland describes that use these properties are:

• tags - a mechanism for aggregation and boundary formation enabling us
to observe and act on properties previously hidden by symmetries;

• internal models - mechanisms for anticipation:
- tacit models - prescribe a current action under an implicit

prediction of some desired future state;

84

- overt models - used as a basis for explicit, internal explorations of
alternatives;

• building blocks - serve to impose regularity on a complex world.

Having defined the above four main properties and three primary mechanisms

common to all complex adaptive systems, Holland describes other elements these

systems have in common. The first such element is the existence of a performance

system, or a uniform way to represent the capabilities of different kinds of agents. Such a

performance system includes:

• a set of detectors - to represent the agent's capabilities for extracting
information from its environment using detectors that detect (and filter)
information from the environment;

• set of IF/THEN rules - to represent the agent's capabilities for processing
information;

• set of effectors - to represent the agent's ability to act on its environment
by describing the agent's actions on the environment in response to a
message.

Once a performance system is established, Holland claims that a means for credit

assignment must be created. Credit assignment uses the agent's successes (or failures) to

assign credit (or blame) to parts of the performance system. The basic idea behind credit

assignment is to assign each rule a strength that over time comes to reflect the rule's

usefulness to the system. This allows the system to use a primitive type of utility theory

and maximize it's fitness (or life strength) by pursuing those actions that increase its

fitness (i.e. give it credit) and avoid those actions that decrease its fitness (i.e. take away

credit). In essence, Darwinian survival of the fittest results.

The whole notion of credit assignment leads to the formation of default

hierarchies. Obviously, useful general conditions (aka defaults) are relatively easy to find

85

and establish. However, more specific exception rules take progressively longer to find

and establish. Therefore, under credit assignment, agents early on depend on over-

general default rules that serve better than random actions. As experience accumulates,

however, these internal models are modified by adding competing, more specific

exception rules which interact symbiotically with the default rules. The resulting model

is therefore called a default hierarchy.

Credit assignment also leads to the idea of rule discovery. Rule discovery

involves making changes in the agent's capabilities, replacing parts assigned low credit

with new options. Rule discovery is in essence the generation of plausible hypotheses. It

centers around the use of tested building blocks. Building blocks are combined to form

new rules and these new rules are tested for their usefulness via their respective additive

(or subtractive) affect on the agent's fitness. Past experience is directly incorporated, but

innovation has broad latitude. This is how the agent learns, by taking risks and thinking

outside of the box. The tag mechanism is used extensively in the rule discovery process.

At the Center for Naval Analysis, Andrew Ilachinski expanded on Holland's ideas

about complex adaptive systems and modeled the actions of marine combatant units as a

complex adaptive system. To Ilachinski, all the basic elements of a complex adaptive

system were present in the model he was proposing. He demonstrated this as follows:

• nonlinear interaction - combat forces are composed of a large number of
nonlinearly interacting parts including:

- feedback loops in the C2 hierarchy;
- interpretation of (and adaptation to) enemy actions;
- decision-making processes;
- elements of chance;

• nonreductionist - the fighting ability of a combat force cannot be
understood as a simple aggregate function of the fighting ability of

86

individual combatants;

• emergent behavior - the global patterns of behavior on the combat
battlefield unfold, or emerge, out of nested sequences of local interaction
rules and doctrine;

• hierarchical structure - combat forces are typically organized in a
command and control (fractal-like) hierarchy;

• decentralized control - there is no master 'oracle' dictating the actions
of each and every combatant and the course of battle is ultimately
dictated by local decisions made by each combatant;

• self-organization - local action, which often appears 'chaotic', induces
long-range order;

• nonequilibrium order - military conflicts, by their nature, proceed far
from equilibrium and understanding how combat unfolds is more
important than knowing the end state of the battle;

• adaptation - in order to survive, combat forces must continually adapt to
a changing environment, and continually adapt to their enemy's
adaptations;

• collective dynamics - there is a continual feedback between the behavior
of (low-level) combatants and the (high-level) command structure.

Ilachinski points out that "agent-based simulations of complex adaptive systems

are predicated on the idea that the global behavior of a complex system derives entirely

from the low-level interactions among its constituent agents" (Ilachinski, 1997:3).

Therefore lessons about the real-world system that an agent-based simulation is designed

to model can be learned by looking at the emergent structures induced by the interaction

processes taking place within the simulation.

Ilachinski stresses that the fundamental building block of most models of complex

adaptive systems is the adaptive autonomous agent. These adaptive autonomous agents

try to satisfy a set of goals in an unpredictable and changing environment. The agents are

87

'adaptive' in the sense that they can use their experience to continually improve their

ability to deal with shifting goals and motivations. They are 'autonomous' in that they

operate completely autonomously, and do not need to obey instructions issued by a God-

like oracle.

According to Ilachinski, all adaptive autonomous agents are characterized by the

same set of properties. Each agent is an entity that, by sensing and acting upon its

environment, tries to fulfill a set of goals in a complex, dynamic setting. The agent can

sense the environment through its sensors and act on the environment through its

actuators. It has an internal information processing and decision-making capability that

allows it to adapt to its locale. The agents anticipation of future states and possibilities,

based on internal models (which are often incomplete and/or incorrect), often

significantly alter the aggregate behavior of the system of which the agent is a part. Each

agent possesses a set of goals which motivates its behaviors. These goals can take on

diverse forms, such as desired local states, desired end goals, selective rewards to

maximize, or internal needs (or motivations) that need to be kept within desired bounds.

The environment in which an agent thrives is only a small part of the actual

system that is created when a complex adaptive systems model is built. Since a major

component of an agent's environment consists of the other agents in the environment,

agents generally spend a great deal of their time adapting to the adaptation patterns of the

other agents around them. This leads to very diverse behaviors dependent on only small

changes in one agent's behaviors. This sensitivity to initial conditions is a trademark of

chaotic behavior as discussed above. The ability of an agent in a complex adaptive

system to survive and evolve in a constantly changing environment is determined by its

88

ability to continually find (either by chance, experience, or a combination of both)

insightful new strategies to increase its overall fitness. Therefore, each agent must

possess both a memory and an internal anticipatory mechanism that it uses to select the

optimal tactic and/or strategy from among a set of predicted outcomes. Except for some

very basic doctrine or rules of the game, the actual tactics for survival are not hard-wired

into the agent. It is left to the agent to discover what works best for it. In the end, agent-

based models are designed to look at the processes that occur due to agent interaction

with the hope of figuring out what drives the process. Specific predictions derived from

agent-based models are not feasible, but just like in chaos theory, indications of long-

term trends (i.e. attractors) are very predictable and insightful.

A.2.3. The Uses and Applications of Complex Adaptive Systems Theory

Just like chaos theory has many uses in the real world, agent-based models have

many real-world applications. Basically any system that derives most of its behavior

from the interactions of the agents in that system can be modeled by a complex adaptive

system. Investors in the stock market, the process of evolution, ants in an ant-hill, and

combatants on the battlefield are just a few examples. Ilachinski took the last example,

combatants on the battlefield, and created his ISAAC program. ISAAC—Irreducible

Semi-Autonomous Adaptive Combat—took the perspective of agents as individual

marine combat units whose autonomous actions on the battlefield were best modeled as a

complex adaptive system. What ISAAC shows is how two opposing forces react (i.e.

fight) when different control knobs on their environment are changed. ISAAC also

allows the modeler to vary the type of marine combatant being modeled, ranging from an

all-powerful strict follower of orders to the more cagey, rule-breaker. With each model

89

run, trends in the outcome of a simulated battle are displayed and insight can be gleamed

about the effects of different command and control strategies.

In the commercial world, many simulation oriented games use the concept of

complex adaptive systems in order to drive the game's behavior. The SimCity game

series by Will Wright of Maxis Software uses a form of complex adaptive system theory

as a means to allow players to create worlds and then perturb their worlds with natural

disasters and other calamities. The goal of the game is to build a world robust enough to

adapt and overcome all the hazards thrown its way.

In another arena of complex adaptive systems theory is the notion of artificial life.

As Ilachinski points out:

The underlying supposition is that life owes at least as
much to its existence to the way in which information is
organized as it does to the physical substance (matter) that
embodies that information. The fundamental concept of
artificial life is emergence or the appearance of higher-level
properties and behaviors of a system that, while obviously
originating from the collective dynamics ofthat system's
components, are neither to be found in nor are directly
deducible from the lower-level properties ofthat system.
(Ilachinski, 1997:7)

The remarkable characteristic of artificial life is that emergent properties are properties of

the 'whole' that are not possessed by any of the individual parts making up the whole.

Artificial life studies life by using artificial components to capture the behavioral essence

of living systems. This bottom-up synthesis approach to modeling stands in marked

contrast to the more conventional top-down analytical approach. Under a lot of

circumstances, though, the bottom-up approach is much more robust and allows for more

creative solutions.

90

In his report, Ilachinski points out that artificial life simulations are characterized

by five general properties:

• they are defined by populations of simple programs or instructions about
how individual parts all interact;

• there is no single 'master oracle' program that directs the action of all
other programs;

• each program defines how simple entities respond to their environment
locally;

• there are no rules that direct the global behavior of the system;

• behaviors on levels higher than individual programs are emergent and
not explicitly programmed into the simulation.

Ilachinski claims that:

Fundamentally, the artificial life approach represents a shift
in focus from "hard-wiring" into a model a sufficient
number of details of a system to yield a desired set of
"realistic" behaviors to looking for universal patterns of
high-level behavior that naturally and spontaneously
emerge form an underlying set of low-level
interactions and constraints. (Ilachinski, 1997:8)

A.2.4. The Use of Exploratory Modeling and Complex Adaptive Systems Models

Once a complex adaptive system model has been built, its best use for predictive

purposes involves playing a lot of 'what-if type games. In doing so, the modeler can test

out hypotheses and see what the resulting system behavior is. This involves the use of

exploratory modeling, a concept pioneered by Steve Bankes. Exploratory modeling is

based on the notion of creating an ensemble of models that can then be used to answer

specific questions. By running many different complex adaptive systems models with

different parameter values, such an ensemble is created providing the decision maker a

set of answers to different scenarios. The decision maker also has a means to compare

91

the results of alternative simulation models to existing data, and therefore is able to verify

the validity of the model. Since complex adaptive systems models require only

knowledge about the actual autonomous behavior of each individual agent, exploratory

modeling can exploit the prescriptive capabilities of models based on limited information.

A complex system is modeled using simple agents. The emergent behavior of the simple

agents is used to answer a plethora of 'what-if questions. Simplicity leads to complexity

which leads to prescriptive forecasting ability.

A.3. Artificial Life

A.3.1. Defining 'Life'

What is life? The apparent simplicity of this question has led to many heated

debates within the science industry. Biologists stick to the notion that life is only a

characteristic of organic matter, while computer scientists feel that limiting life-like

qualities to organic entities is not fair. They claim that non-organic creations, like

computer program based organisms, can be created as forms of life. But, the exact

definition of 'life' still eludes most.

For centuries, a definition of life has been sought by scientists. During most of

this time, biologists ruled and felt that any definition of life must be grounded in organic

principles. The early searchers felt that living organisms had what they called a 'vital

force' or 'elan vital' that supposedly existed only in living organisms. Some even

considered it the divine component of life. As Steven Levy points out in his book

Artificial Life: A Report from the Frontier where Computers meet Biology, the vitalists'

ideals are still very present today:

92

Though it would be a difficult task to unearth a modern
scientist subscribing to that true doctrine [the presence of
the vital force], vitalism of a sort seems to persist. There
remains in us all an atavistic tendency to surrender
biological prerogatives to any so-called beings outside the
known family of earthbound organisms. There is a
particular reluctance to concede the honor of life-form to
anything created synthetically. This reluctance often
transforms itself into profound skepticism, even mockery,
when one suggests that life could be fashioned in a
laboratory or in a computer, by using as the main substrate
not organic molecules or other familiar forms of chemistry
but something quite different—information. Information.
The premise being that the basis of life is information,
steeped in a dynamical system complex enough to
reproduce and to bear offspring more complex than the
parent. (Levy, 1992:22)

Aside from the entire organic argument, the remaining characteristics of life are

also still debated. Many have suggested that among other characteristics, anything that is

considered alive must be able to grow (and nourish itself), reproduce (and therefore

procreate itself), adapt to its environment, and evolve to a higher level of fitness. In order

to accomplish all this, the entity given the quality of life must be quite complex. This

complexity issue is what has kept us from truly understanding life.. .until now. With the

dawn of the computer revolution and the prolific rise of personal computer use, even the

researcher with the tightest budget can afford to purchase or lease enough computing

power to harness the massive processing ability needed to create complex organisms.

The computer has opened the door for all to examine life more closely. We now have the

means to uncover once and for all what it takes for something to be alive.

Christopher Langton, considered by most to be the father of the artificial life

movement, showed that the stuff of life is not stuff, but it's the organization ofthat stuff

that matters: "The leap you have to make is to think about machineness as being the logic

93

of organization.. .It's not the material. There's nothing implicit about the material of

anything—if you can capture its logical organization in some other medium you can have

the same 'machine' because it's the organization that constitutes the machine, not the

stuff it's made of (quoted in Levy, 1992:117). To Langton, life was a process, not a

collection of matter. And just like any other process, if the process of life could be

duplicated, then artificial life is created, regardless of the materials used in that creative

effort. According to Langton, life was defined as "a property of the organization of

matter, rather than a property of the matter which is so organized" (quoted in Levy,

1992:118). In his opinion, there should be nothing in the definition of life precluding it

from being created in non-organic forms. He went so far as to state that life did not even

require a physical body as long as the processes peculiar to life were faithfully carried out

by the entity in question.

The notion of life not being limited to organic material opened up the doors for

the computer scientists to compete with the biologists and chemists in the race to see who

could first create life. But, in the end, for either side to win the race, the two groups

would find that their pursuits had a lot more in common than they dared admit to each

other. The biologists and computer scientists would soon come to realize that, in order to

create life, they would first have to understand life.

Stuart Kauffman, a physician by training but a philosopher by vocation, spent

years in pursuit of artificial life from the biological standpoint until he came to the

realization that the best way to create life was to use complex adaptive systems theory

and the power of the modern computer. He found that logic, not matter, is what life was

all about:

94

Artificial life... is a way of exploring how complex
systems can exhibit self-organization, adaptation,
evolution, co-evolution, metabolism, all sorts of stuff. It is
mimic of biology, although biologists don't know it yet.
Out of it will emerge some sort of strange companion
theory to biology... a particular substantiation of how
living things work. This emerging discipline may be
getting at what the logical structure is for living things,
(quoted in Levy, 1992:124-125)

In his book At Home in the Universe, Kauffman professed support for the notion

that life was an emergent properly of the interacting parts of a system:

Life... is not to be located in its parts, but in the collective
emergent properties of the whole they create. Although life
as an emergent phenomenon may be profound, its
fundamental holism and emergence are not at all
mysterious. A set of molecules either does or does not
have the property that it is able to catalyze its own
formation and reproduction from some simple food
molecules. No vital force or extra substance is present in
the emergent, self-reproducing whole. But the collective
system does possess a stunning property not possessed by
any of its parts. It is able to reproduce itself and to evolve.
The collective system is alive. Its parts are just chemicals.
(Kauffman, 1995:24)

To Kauffman, life, and artificial life for that matter, emerges from the dynamic behavior

of a group of organisms, not from the individual organisms acting alone by themselves.

The system, not what made it up, was what possessed the quality of life. To create

artificial life, the system would have to become alive.

The implication of artificial life for biology could be truly profound. Kauffman

was sure that if scientists could identify the forces of self-organization and complexity

inherent in nature, then life-like behavior could be duplicated by man and computer. This

duplicate of life would take advantage of the self-organizing forces found in nature and

use them to structure man-made organisms to mimic their natural counterparts. In so

95

doing, it would be possible to create life in the form of new organisms that harnessed the

complexity of nature in their very essence. The emergent creations would be more

complex than any human designer could create on his own, and this alone would be proof

of the re-creation of life. With this accomplished, the implications of artificial life would

be tremendous to say the least.

A.3.2. The History and Development of Artificial Life

Although Chris Langton is credited by most as the father of the artificial life

movement thanks to his sponsorship of the first artificial life conference in September of

1987 at the Santa Fe Institute in New Mexico, it was actually John Von Neumann who

came up with the first ideas related to artificial life back in the 1940s and 50s. Captivated

by the complexity of nature around him:

Von Neumann would readily admit that biological
organisms were complex, more complicated than any
artificial structure man had ever pondered. But ultimately,
because he believed life was based on logic, he believed
that we were capable of forcing organisms to surrender
their secrets. (Levy, 1992:15)

To say Von Neumann was a genius is an understatement. Although he died

nearly 50 years ago, principles he came up with are still widely used in the sciences

today. Among them are his ideas about cellular automata. The automaton was the basis

for what he considered the hope of creating artificial life. Von Neumann defined

automata as:

self-operating machines, specifically any such machine
whose behavior could be unerringly defined in
mathematical terms. An automaton is a machine that
processes information, proceeding logically, inexorably
performing its next action after applying data received from
outside itself in light of instructions programmed within

96

itself. (Levy, 1992:15)

Unfortunately for the science community, Von Neumann died before he could

finish his research into automata and artificial life. The world lost perhaps one of its

greatest thinkers when Von Neumann died, and the artificial life movement lost one of its

greatest proponents. As a result, it would be decades before the pursuit of artificial life

would again be restarted.

It wasn't until the late 1960s that artificial life once again came into the sciences.

At Cambridge University, in 1968, the artificial life movement was reborn, and with a

vengeance. John Horton Conway, a gifted mathematician with a knack for games,

decided to create a game of his own—the game of Life. In his own words:

Life occurs on a virtual checkerboard. The squares are
called cells. They are in one of two states: alive or dead.
Each cell has eight possible neighbors, the cells which
touch its sides or its corners. If a cell on the checkerboard
is alive, it will survive in the next time step (or generation)
if there are either two or three neighbors also alive. It will
die of overcrowding if there are more than three live
neighbors, and it will die of exposure if there are fewer than
two. If a cell on the checkerboard is dead, it will remain
dead in the next generation unless exactly three of its eight
neighbors are alive. In that case, the cell will be "born" in
the next generation, (quoted in Levy, 1992:52)

That was it. The entire game of Life could be explained by those simple rules. However,

playing the game of life did not result in simple outcomes. On the contrary, the game of

life evolved into a plethora of incredibly interesting and complicated geometrical shapes.

Designed originally for a large game board, game of Life players began to create

computer programs to play the game more easily. As a result even more complexity was

discovered. Things like gliders that would move continually across the playing field in a

97

diagonal motion gave players the eerie feeling that their computers were coming alive.

Glider guns were soon to follow, and now not only did the game of Life have moving

entities in its environment, but also a means to create new entities. The implications for

artificial life were astounding, and all of a sudden the pursuit of artificial life was back.

Conway's game of Life ignited the fire smoldering since Von Neumann's death

decades ago. Now, artificial life scientists were cropping up all over the country. With

the computer revolution programmers soon came to realize that they would be the ones

on the forefront of the artificial life movement.

Von Neumann's cellular automata were rediscovered. Their ability to surprise

their users is what made them so appealing to artificial life practitioners. Just like life

surprises us continuously, cellular automata could surprise their programmers:

In a sense, with cellular automata, researchers turned the
keys [to building and understanding models] over to nature.
Forces of self-organization, not yet understood, along with
the particular artificial physics in the given experiment,
would drive the system. Sometimes, the destination would
be unexpected. That was the mystery and power of CAs.
(Levy, 1992:60-61)

As Tommaso Toffoli so eloquently pointed out in his graduate thesis on the worth of

cellular automata (CA):

The importance of cellular automata lies in their connection
with the physical world. Particularly that of complex
dynamical systems, where behavior arises as an emergent
property of a number of variable forces. Because, unlike so
many things simulated on the computer, CAs do not merely
reflect reality—they are reality. They are actual dynamical
systems. While they can be used to model certain physical
systems, with the validity of each model to be determined
by how well the results match the original, they can also be
used to understand complex systems in general. (Levy,
1992:61)

98

Therefore, the use of cellular automata, Von Neumann's prophetic creations, would not

only restart the entire artificial life movement, but would eventually lead to other sciences

(like biology, chemistry, and physics) beginning to consider the implications of artificial

life in their research.

Throughout the rest of the 1970s and the early 1980s, artificial life practitioners

were hindered by the fact that the computer was still not user friendly enough. However,

undaunted, people like Ed Fredkin and Stephen Wolfram pushed on and learned to use

the bigger and more powerful university mainframe computers for their studies. These

men expanded on Von Neumann's cellular automata ideas and began to shape the science

of artificial life. Ed Fredkin went so far as to claim that life as we know it was just one

big cellular automata. He postulated that living organisms in our universe acted by the

same 'simple' (relatively so at least) rules that were characteristic of the organisms in a

cellular automata environment and that we just didn't know or completely understand the

rules... yet.

Stephen Wolfram sought to use cellular automata to make significant statements

about the entire science of complex adaptive systems theory. He sought to use cellular

automata to explain how complexity emerged from simple origins. Using one-

dimensional cellular automata, he came up with what he called his four classes of cellular

automata. Class 1 consisted of stable forms, those cellular automata that were all blank

(representing all dead cells) or all dark (representing all living cells). Class 2 contained

the periodic forms whose initial activity ceased and became stable (and very predictable)

over time. Class 3 included all the chaotic forms where disorder reigned. Finally, class 4

was where the interesting cellular automata emerged. This class was characterized by

99

disorder, yet massively complex behavior, very similar to real-life biological behavior,

seemed to emerge. The richly complex forms that comprised this class, Wolfram felt,

was where one would find life. Using cellular automata, one could recreate life.

Working off Wolfram's ideas, Chris Langton saw an apparent continuum of

activity in the artificial life realm. Wolfram's four classes, he felt, described all manner

of cellular automata that could be created, but he chose a more graphic way to display it

(see Figure 10: Langton's Continuum of Activity). This figure shows Langton's view of

-^^
x \

/ T3 I u 1 \
periodic 1 \ o /

\ ° /

chaotic]

Figure 10: Langton's Continuum of Activity

the movement of information in complex adaptive systems. At the left, in the fixed

region, is the area where information is frozen. Life cannot live there. To the right of it

is a somewhat more flexible arena of limited periodic movement. The periodic nature of

this movement, however, precludes life from living here too. To the far right, in the

realm of chaos, there is no order and structure cannot be maintained, hence life is also

doomed here. In the center, though, there exists a sweet spot that can maintain life.

Here, information is stable enough to support structure but loose enough to allow for

growth and change. This is where life lives. (Graphic from Levy, 1992:110).

Building on this continuum, Langton sought to isolate a general quality of life that

could help determine whether or not an environment could support life. His dissertation

100

work at the University of Michigan's Logic of Computers Group did just that. Langton

was able to identify a control knob, what he called the lambda (X) factor, that could be

used to quantifiably express whether or not an environment could support life. Langton

scaled lambda so that it ranged between 0 and 1. As described by Levy:

If the X value was very low, approaching zero, this
represented a regime in which information was frozen. It
could easily be retained through time, but it could not
move. If you were to picture a substrate that illustrated
this, you might choose a solid such as ice. Ice molecules
retained their position and state as time passed, but, since
they did not move around, no new information emerged.
Under those circumstances, life could not thrive. If the X
value was very high, approaching its maximum value, then
information moved very freely and chaotically and was
very difficult to retain. The information could be
envisioned as molecules in a gaseous, or vaporous, stage.
Life could not be supported in these conditions, either. On
the other hand, there was a certain area where information
changed but not so rapidly that it lost all connection to
where it had just been previously. This was akin to a liquid
state. Langton discovered that it was the liquid regime that
supported the most engaging events, those that would
support the kind of complexity that was the mark of living
systems. (Levy, 1992:109)

As shown in Figure 11: Langton's X Factor (graphic from Levy, 1992:111), life was

Figure 11: Langton's X Factor

101

only supported in a very specific type of environment. This graph shows that a key

ingredient to life was the proper mixture of order and chaos. As depicted in the figure,

this proper mixture was on the edge of a cliff side. To the left of the cliff was the barren

wasteland of stagnant information, where nothing could move. To the right lay chaos,

were all order was lost and information flowed too freely. In the middle of all this,

however, life could take advantage of both extremes and sustain itself. The order from

the stagnant side helped counteract the disorder from the chaotic side, while the chaotic

side helped the stagnant side enjoy some mobility. Langton claimed that scientists would

find life "on the edge of chaos" (quoted in Levy, 1992:111).

Having now determined what environments could support life, Langton decided

to begin codifying an analytical approach to implementing artificial life. He called his

idea the bottom-up approach, espousing to the fact that small, agent-based models could

be built where life-like qualities could emerge from the agents interactions with each

other and their environment. To Langton, "the concept described the collective power of

small actions rippling upward, combining with other small actions, often recursively so

that action would beget reaction—until a recognizable pattern of global behavior

emerged" (Levy, 1992:105). No central intelligence controlled the agents, they were in

charge of their own destinies.

Langton later codified these elements of bottom-up architecture into his approach

for designing the essential characteristics of a computer-base artificial life model. To

him, artificial life models should:

• consist of populations of simple programs or specifications;

• have no single program that directs all of the other programs;

102

• each program details the way in which a simple entity reacts to local
situations;

• there are no rules in the system that dictate global behavior;

• any behavior at levels higher than the individual programs emerges.

With the groundwork in theory now laid firmly in place, it came time to

experiment with the new paradigm. Models began being built all over the scientific

community and it was beginning to look like artificial life might have found its place in

the realms of science. Applications in the computer sciences were not the only place

artificial life mechanisms were springing up. Biologists, chemists, physicists, even

graphical animators were using the tenets of artificial life to make newer and better

models. It seemed as if the quest for artificial life was truly in full swing.

A.3.3. The Uses and Applications of Artificial Life

With the theory now firmly in place, artificial life practitioners were ready to try

their new found science out. Budding computer scientists began experimenting with

cellular automata and other simple organisms in the virtual world of the computer

environment. There they could create their little life forms, set up an environment for

them to live in, and then let them loose to live at large. Although very simplistic by

today's standards of computer programming, these early artificial life forms were truly

remarkable. The work done by these patriarchs of artificial life helped set the stage for

future artificial life researchers in the decades to come.

By the 1980s, the artificial life movement had spread throughout the science

community. Artificial life methods were being investigated in everything from biology

and chemistry to physics and psychology. The advent of the personal computer also

103

made it possible for what Steven Levy likes to call "garage band" scientists to begin

tinkering with artificial life (Levy, 1992:85). Among these garage band scientists was a

Craig Reynolds, and his work would forever change the world's outlook on artificial life.

A computer animator in the graphics division of the Symbolics Computer

Company, Reynolds was destined to exploit the use of artificial life. Known for going on

long walks during his lunch hour, he was constantly caught gazing at a flock of black

birds that inhabited the park within which he liked to walk. These birds were what led

Reynolds to begin his quest for artificial life.

To Reynolds, the flocking behavior exhibited by the birds was truly captivating.

He noticed that there was no lead bird, no bird that directed the movements of the other

birds in the flock. The flocking activity of all the birds was largely a decentralized

phenomenon, and each bird seemed to follow some simple rules. The flocking behavior

just emerged from the collective action of all the birds. In his own words:

The motion of a flock of birds is.. .simple in concept yet is
so visually complex it seems randomly arrayed and yet is
magnificently synchronous. Perhaps most puzzling is the
strong impression of intentional centralized control... Yet
all evidence indicates that flock motion must be merely the
aggregate result of the actions of individual animals, each
acting solely on the basis of its local perception of the
world, (quoted in Levy, 1992:76)

This apparent paradox, the seemingly unified flocking activity of the decentralized

behaving birds, intrigued Reynolds. Here was the complexity of nature at its best. The

simple minded birds were concerned only about their own immediate environment, but

taken together, the entire group of birds' individual actions led to incredibly complex and

dynamic group behavior. The flock was born of the individual birds acting on their own

104

behalf but combining their actions to form one entire system. This was the essence of

artificial life.

Reynolds began to observe the birds more critically. He soon boiled their

behavior down to three simple rules (presented in Levy p, 1992:77):

1. a clumping force that kept the flock together;

2. an ability to match velocity so that birds in the flock would move at the
same speed;

3. a separation force that prevented birds from getting too close to each other.

That was it. These three rules explained the entire system. There was nothing else going

on in the flock except scores of birds following these three simple rules. If birds could do

it, then Reynolds felt he could reproduce the same behavior using computer graphics.

Reynolds began working immediately on creating an artificially living flock of

birds on a computer. Dubbing his creation 'boids', short for 'birdoids', he created an

artificial flock using computer graphics and the three rules the birds in the real flock

seemed to follow. His project was a success, and as he states, "as they flew, the boids

would notice what their neighbors were doing—as though they were cells in a cellular

automata—and apply that information to their own actions in the next time step" (quoted

in Levy, 1992:77).

The notion of allelomimesis, a phrase coined by Jean-Louis Deneubourg, was

created. Allelomimesis was based on the idea that an individual's actions were dictated

by the actions of a neighbor. Allelomimesis was what controlled the flocking behavior of

birds both in nature and Reynolds' boids simulation. Similar parallels could be drawn to

swarms of flies, schools offish, herd of gazelle, the list goes on. The scientific

105

implications of this simple experiment were beginning to grow. In a way the artificial

life movement was taking on a life of its own.

What Reynolds had accomplished was truly a break-through for the entire

artificial life cause. He had successfully duplicated a natural phenomenon using artificial

means. On his computer he had created artificial life that completely mimicked the real

thing. As Steven Levy points out:

Something was happening in this simulation, quite possibly
something that had relevance to real birds, perhaps to group
motion in general. It did not mean that birds actually used
those rules, but it at least showed that using those rules would
produce a behavior that looked like flocking. Would not
ornithologists benefit from using these models to perform the
sorts of experiments that would be impossible in the field but
absurdly simple in the computer room? (Levy, 1992:79-80)

There was the key to artificial life's appeal. By creating an artificial life representation of

the real system, experiments could be conducted in the virtual world that would be either

too risky, too expensive, or just plain impossible in the real world. The benefits of

artificial life were beginning to become very apparent. But there was even more.

The Mobile Robot (Mobot) Group at MIT's Artificial Intelligence Laboratory was

becoming increasingly aware and very interested in the whole artificial life ideal.

Attempting to create robots able to act on their own, the members of the Mobot group

were becoming painfully aware of the current limits in the artificial intelligence

community. They saw the artificial life movement as a solution to this dilemma and

began pursuing it as a means to provide their robots autonomy.

Rodney Brooks, leader of the Mobot Group in the mid 1980s, was especially

frustrated with the artificial intelligence paradigm then used for robotic intelligence. He

106

felt that trying to get robots to think like humans was fruitless, especially since most

robotic actions only required the intelligence of an insect at best. Instead of creating

geniuses that could beat a chess grand champion but not navigate across a cluttered room

because they spent too much time analyzing the terrain, he wanted to create insect like

robots that were not particularly smart from humanity's standpoint, but that could very

easily traverse even the toughest terrain just like real insects could. As such, ethology, or

the study of animal behavior, became an integral part of a roboticists knowledge base.

Using these new artificial life ideas, the researchers at the Mobot Group began

creating real artificial life. Their robots resembled the intelligence they were trying to

mimic, namely insects. Built with short stout legs and the ability to move them all in an

insect like rhythm, these little machines were beginning to act more and more like the

insects they drew their design from. Creations like Genghis and Attila became over-night

sensations. Robots were finally being built that could actually do something useful.

Their construction was such that they looked and acted like metallic cockroaches. They

responded to their environment by following a simple set of rules within their data-base

brain, and then constantly adapting themselves to their new surroundings.

NASA became particularly interested in these new robotic creations. If humanity

sought to investigate the other planets in the solar system, it would need to send out some

explorers to collect data first. Robots were the natural choice for such a mission.

However, control from Earth would be difficult, especially as the distances grew.

Sending information back and forth to a robot on Mars about what foot to place in front

of the other would take minutes and be subject to signal degradation. It would make

more sense for the robots to walk and perform these simple functions independently and

107

rely on Earth control only for major mission level objectives. In short, robots that were

'alive' and could implement their own solutions to problems would fare much better than

those that relied on continued support from a million miles away. Robots based on

artificial life became NASA's primary vehicle for interstellar exploration. As-a-matter-

of-fact, the robot used to explore the Martian landscape just recently can thank its

ancestors Genghis and Attila for laying down the groundwork for its ability to maneuver

the treacherous landscape on Mars.

Lately, though, the most startling advances in the artificial life movement have

come by some rather dubious means. Experimenting with parasitic computer code in late

1983, Fred Cohen created the first computer virus on the 3rd of November that year.

Hoping to use his virus to perform routine banal tasks relating to file maintenance, Cohen

truly did not foresee what his Frankenstinian creation would beget. Realizing that his

virus was supposed to "infect other programs by modifying them to include a possibly

evolved copy of itself' (quote by Cohen in Levy, 1992:312), he failed to see the

diabolical nature by which such a program could be used. Instead, Cohen felt that good

viruses could "lead to remarkable enhancements of information systems, which should

come to bear the brunt of the world's menial work" (quoted in Levy, 1992:333).

However, viruses were too easy to create and too easy to use for destructive purposes,

and Cohen didn't realize all this until it was too late. Once created, the virus revolution

took off, and today millions of computer systems are infected by malicious descendants

of Cohen's first creation.

The creation of computer viruses, though, did create quite a stir in the artificial

life movement. The debate over life's definition was started all over again. If humans

108

could create viruses on computers, had artificial life really been created. As Steven Levy

points out, the answer was not forthcoming:

It was true that Cohen's virus, the Brain virus [written by
two Pakistani computer store owners in 1986], certain Core
War organisms [created by A. K. (Kee) Dewdney in May
of 1984)], and hundreds of other persistent computer
creatures shared a frightening quality with natural
organisms. All drew on forces much more powerful than
themselves, in a manner consistent with life's slickest
move: an apparent violation of the second law of
thermodynamics. As Leonard Adleman was quick to
perceive, Cohen's virus accomplished this trick with eerie
similarity to the devices of biological viruses. Yet this
alone did not bestow them life. In fact, it was not clear
whether a biological virus itself could be included in the
society of life. The debate over this matter had long ago
turned into a unproductive stalemate. Biological viruses
are no more than naked strands of nucleic acid, either RNA
or DNA, surrounded by a sheath of protein. They cannot
perform their key organic functions, particularly
reproduction, without commandeering the host cells they
rudely violate. They remain dormant until invading a cell
of a host species, whereupon they burst into activity,
hijacking the mechanics of the cell so that it performs tasks
geared toward the viruses' ends. The materials inside the
cell are appropriated to reproduce new viruses. At times,
even parts of the host cell's DNA code are reinterpreted to
aid in the production of viruses. Thus viruses are
incomplete organisms. To some, this incompleteness
indicated that viruses were something less than fully alive.
To others, it seemed obvious that viruses shared so much
with organisms universally considered alive—the family of
life, from bacteria and up the ladder of complexity—that
the boundaries of our definition must include them.
Because we had no definition of life, the question was
perpetually up for grabs. (Levy, 1992:326-327)

Overall, computer viruses do make a rather compelling case for aliveness, at least

to the degree that biological viruses can be considered alive. However, the debate does

not end there. If computer viruses can be considered alive, then what about Reynold's

109

boids, or Brook's robots. Would these too be considered alive? This debate still rages on

in the halls of science.

Artificial life is an incredibly dynamic topic. As Levy shows, it seems to spit in

the face of science's strict second law of thermodynamics:

According to the second law of thermodynamics, as time
passes, energy dissipates and becomes unusable. Order
deteriorates. But life seems to behave as if it has not
bothered to read the second law. Life seems to propagate
order over time. From its unquestionably simpler
beginnings, the history of life as we know it has been a
trajectory of increasing well-ordered complexity. (Levy,
1992:34)

If this is true, and most artificial life practitioners believe it is, then how long will it be

before humanity really does create artificial life? More importantly, how long before

humanity creates artificial life to such a degree that we bring about our own extinction?

When will artificial life surpass us in the evolutionary arms race?

110

APPENDIX B - JAVA SOURCE CODE

B.l. PilotRetention Class

// Capt Marty Gaupp's Air Force Institute of Technology Thesis Project
//
// last revised on 25 Feb 1999
//
// this is the main applet class that controls and calls all the other classes

import java.awt.*;
import java.applet.*;
import java.util.*;
import java.io.*;

// main applet class
// this class extends Applet and controls the entire program

public class PilotRetention extends Applet implements Runnable

{
// parameteres used throughout the program to control various aspects of execution

static int DELAY

static boolean LOOP = false;
static int ITERATIONS = 5;
static int LOOPLENGTH - 4000;
static boolean FILEOUT = LOOP;
static String outputFileName;
static FileOutputStream dataOut =
static int INITMONEYRHO = 55;
static int INITTIMERHO = 25;
static int INITHIRINGVALUE = 80;
static int INITPAYGAPVALUE = 80;
static int INITOPSTEMP0VALUE = 80;
static int ROW = 0;
static int COL = 0;

// used as a delay in the printing of the summary statistics
// a counter is mod'ed by this number
// when the result is zero, a statistic is recorded
// used to toggle the looping of the algorithm for LOOPLENGTH/10 observations
// the number of iterations to perform for each model
// LOOPLENGTH/DELAY is the number of observations that will be taken
// used to toggle the output of data to a file
// string to hold the name of the output file
// file output stream for the data
// initial value for the money rho
// initial value for the time rho
// initial value for the hiring value
// initial value for the paygap value
// initial value for the opstempo value
// row counter variable for the OutputArray in the SummaryStats class
// column counter variable for the OutputArray in the SummaryStats class

// the applet's class-wide variables

Thread runner;
public PlayingField agentField;
public MainCaption title;
public EnvironmentControl environment;
public PilotControl pcontrol;
public SummaryStats stats;
public Panel north;
public Panel south;
public Panel center;
public Panel east;
public Panel west;
public int wdth;
public int hght;

// thread of execution
// the playing field
// title of the applet
// the environmental controls
// the pilot's utility curves
// the summary statistics
// top of the screen
// bottom of the screen
// center of the screen
// east of the screen
// west of the screen
// width of the PlayingField
// height of the PlayingField

// static variables used to hold values from other classes

static
static
static
static
static
static
static
static

public
public
public
public
public
public
public
public

int hiringValue;
int paygapValue;
int opstempoValue;
int tmwtValue;
double moneyWt;
double timeWt;
int moneyRho;
int timeRho;

// the value of the
// the value of the
// the value of the
// the value of the
// the weighting of
// the weighting of
// the rho value of
// the rho value of

hiring environmental control
pay gap environmental control
operations tempo environmental control
time/money weight environmental control
the money utility curve
the time utility curve
the money utility curve
the time utility curve

// static variables for holding summary stats values

static public int totalNumberExited = 0;
static public int totalExitMin - 0;
static public int totalExitMid = 0;
static public int totalExitEnd = 0;

// the applet's class-wide static variables

static int appWdth = 700;
static int appHght = 500;
static Vector pilots;
static int NUMAGENTS = 10;
static int SLEEP = 20;
static int NUMNBORS - 2;

// the total number that exited the system
// the total number that exited at the end of UPT commitment (8 YOS)
// the total number that exited at the middle of their career (14 YOS)
// the total number that exited at the end of their career (20 YOS)

// width of the applet's window
// height of the applet's window
// pilots is a vector of all the pilots
// keeps track of the number of agents
// the pause between animation repaints
// number of neighbors to keep track of
// increasing it increases the cohesiveness of the pack

111

static double KICK - 0.05;

static int REVRSDIST = 200;

static double ACCEL = 0.3;
static double ACCELTOMID = 0.2;

static double ACCELTOSEP =0.2;
static double ACCELTORET = 0.2;
static double MAXSPEED = 7.0;
static double BOUNCESPEED =0.8;
static double INITIALSPEED = 4.0;
static int SEPTHRESH = 100;

// percentage of time that a random kick is given to the system
// this gives the entire system a stochastic nature
// used to indicate when the agent needs to reverse directions
// this indicates the agent's personal space
// get inside this and you should start moving in the opposite direction
// agent's acceleration in pixels
// agent's acceleration toward the middle of the playing field
// used to adjust the agent's position if he get's too far off center
// agent's acceleration toward the separation zone
// agent's acceleration toward the retention zone
// upper limit for the agent's speed
// speed used to bounce off other agents and canvas boundaries
// used to give instantiated agents their initial speed
// the system's separation threshold
// once this many separation requests have been lodged, the agent can separate

// this method initializes the applet
// it sets up the entire graphic display via the border layout manager

public void init()
{

resize(appWdth, appHght);

setLayout(new BorderLayout0);
setBackground(Color.white);

north - new Panel 0;
north.setLayout(new FlowLayout{));
title = new MainCaption();
north.add(title);

south = new PanelO;
south.setLayout(new FlowLayout()) ;
stats = new SummaryStats();
south.add(stats);

center = new PanelO;
center.setLayout(new FlowLayout()) ;
agentField = new PlayingFieldO;
center.add(agentField);

east = new PanelO;
east.setLayout(new FlowLayout O);
environment = new EnvironmentControlO;
east.add(environment, BorderLayout.CENTER);

west = new PanelO;
west.setLayout(new FlowLayout());
pcontrol = new PilotControl();
west.add(pcontrol);

add(north, BorderLayout.NORTH);
add(south, BorderLayout.SOUTH);
add{center, BorderLayout.CENTER);
add{east, BorderLayout.EAST);
add{west, BorderLayout.WEST);

// initialize the pilot array of agents
pilots = new Vector(NUMAGENTS);
hght = agentField.sizeO.height;
wdth = agentField.size{).width;
forfint i=0;i<NUMAGENTS;i++)
{

Agent newPilot = new Agent(i,hght,wdth);
pilots.addElement(newPilot);

}
randomize();
// end pilot array initialization

} // end init{) method

// this method starts the entire applet
// it starts the applet's main thread of execution

public void start()
{

runner - new Thread(this);
runner.start();

} // end start() method

// this method runs the entire applet
// it initializes the pilot array of agents
// it randomizes the neighbors of the pilots in the array
// it calls the randomizeO method KICK% of the time
// it sleeps the entire system for SLEEP nanoseconds in order to allow the animation to be seen
// it repaints the entire graphic after each iteration

112

public void run{)
{

if (FILEOUT) // setup the output data file

{
outputFileName = new String("DataOut.out");
try
{

dataOut = new FileOutputStream (outputFileName);

}
catch(IOException e)

{
System.out.println("Error opening " + outputFileName);

}
String header = new String("money rho\ttime rho\thiring\tpaygap\topstempo");
PrintStream headerPS = new PrintStream(dataOut);
headerPS.println(header);

} // end if(FILEOUT)

// call the randomize() method KICK% of the time

if(LOOP) // do the algorithm for LOOPLENGTH/10 observations

{
int runNumber =0; // keeps track of the run number
COL = 0; // reset the column number after each set of iterations for a given paramater set
// get the original paramater values

hiringValue = environment.getHiringValue();
paygapValue = environment.getPaygapValue();
opstempoValue = environment.getOpstempoValue();
timeWt = {(double) (100 - environment.getTmwtValue()))/100;
moneyWt = ((double) environment.getTmwtValue())/100;
moneyRho = pcontrol.getMoneyRhoValue();
timeRho = pcontrol.getTimeRhoValue{);

if (FILEOUT) // output the iteration data to a file

{
PrintStream iterPS = new PrintStream(dataOut);
String dataLine = new String("money = " + moneyRho + "\t" +

"time = " + timeRho + "\t" +
"hire = " + (100-hiringValue) + "\t" +
"gap = " + (100-paygapValue) + "\t" +
"ops = " + (100-opstempoValue));

iterPS.println(dataLine);
PrintStream statsHeaderPS = new PrintStream(PilotRetention.dataOut);
String statsHeader = new String("Min - l\tMid - l\tEnd - l\t" +

"Min - 2\tMid - 2\tEnd - 2\t" +
"Min - 3\tMid - 3\tEnd - 3\t" +
"Min - 4\tMid - 4\tEnd - 4\t" +
"Min - 5\tMid - 5\tEnd - 5\t" +
"Min - AVG\tMid - AVG\tEnd - AVG");

statsHeaderPS.println(statsHeader);
} // end if for iteration data to file output

for (int iter=0;iter<ITERATIONS;iter++)
{

runNumber - runNumber +1;
System.out.printlnC'Doing run number " + runNumber + " which is iteration number " + (iter+1) +

" with moneyRho = " + moneyRho + " timeRho = " + timeRho +
" hiringValue = " + (100-hiringValue) + " paygapValue = " + (100-paygapValue) +
" opstempoValue = " + (100-opstempoValue));

int oldNUMAGENTS;
int timer = 0;

for (int 1=0;1<LOOPLENGTH;1++)

{
OldNUMAGENTS = NUMAGENTS;
if (Math, random () < KICK) randomized;

// update values from environmental control

hiringValue = environment.getHiringValue();
paygapValue = environment.getPaygapValue();
opstempoValue = environment.getOpstempoValue();
timeWt * ((double) (100 - environment.getTmwtValue()))/100;
moneyWt = ((double) environment.getTmwtValue{))/100;

// update values from utility curves

moneyRho = pcontrol.getMoneyRhoValue();
timeRho = pcontrol.getTimeRhoValue();

// add agents every 100 passes through the loop

timer - timer + 1;
if (timer%100 == 0)
{

int curSize = pilots.size();
int newNum = curSize;
Agent newPilot = new Agent(newNum,hght,wdth,0);
pilots.addElement(newPilot);
NUMAGENTS = NUMAGENTS + 1;
randomize();

113

// remove agents if exit is true

for (int i=0;i<NUMAGENTS;i++)

{
Agent curPilot = (Agent) pilots.elementAt(i);
if (curPilot.exit)
{

totalNumberExited = totalNumberExited + 1;
if (curPilot.YOS < 12) totalExitMin = totalExitMin + 1;
if ((curPilot.YOS >= 12) SS (curPilot.YOS < 20)) totalExitMid = totalExitMid + 1;
if (curPilot.YOS >= 20} totalExitEnd » totalExitEnd + 1;
pilots.removeElementAt(i);
NUMAGENTS = NUMAGENTS - 1;
randomize();

}
}
agentField.repaint();
stats.repaint();
try
{

Thread.sleep(SLEEP);
}
catch(InterruptedException e)
{
}

} // end LOOPLENGTH loop
// increase the COL value by one
COL = COL + 1;
// destroy the old agents and create 10 new ones
// destroy the old agents
pilots .removeAHElements {) ;
NUMAGENTS = 10;
// create 10 new agents
for(int i=0;i<NUMAGENTS;i++)
{

Agent newPilot = new Agent(i,hght,wdth);
pilots.addElement(newPilot);

>
randomize();
totalNumberExited = 0;
totalExitMin - 0;
totalExitMid = 0;
totalExitEnd - 0;
if (COL > 0) ROW = 0; // reset the ROW counter based on COL's value

} // end ITERATIONS loop

} // end the algorithm for LOOPLENGTH/10 observations

else // use the algorithm indefinitely

{

int oldNUMAGENTS;
int timer = 0;

while (true)
{

oldNUMAGENTS = NUMAGENTS;
if (Math.random() < KICK) randomize{);

// update values from environmental control

hiringValue = environment.getHiringValue();
paygapValue = environment.getPaygapValue(); *
opstempoValue = environment.getOpstempoValue{);
timeWt = ((double) (100 - environment.getTmwtValue()))/100;
moneyWt = ((double) environment.getTmwtValue())/100;

// update values from utility curves

moneyRho = pcontrol.getMoneyRhoValue();
timeRho = pcontrol.getTimeRhoValue();

// add agents every 100 passes through the loop

timer - timer + 1;
if (timer%100 == 0)
{

int curSize = pilots.size();
int newNum = curSize;
Agent newPilot = new Agent(newNum,hght,wdth,0);
pilots.addElement(newPilot);
NUMAGENTS = NUMAGENTS + 1;
randomize();

}

// remove agents if exit is true

114

for (int i=0;i<NUMAGENTS;i++)
{

Agent curPilot - (Agent) pilots.elementAt(i);
if (curPilot.exit)
{

totalNumberExited = totalNumberExited + 1;
if (curPilot.YOS < 12} totalExitMin = totalExitMin + 1;
if ((curPilot.YOS >= 12) && (curPilot.YOS < 20)) totalExitMid = totalExitMid + 1;
if (curPilot.YOS >= 20) totalExitEnd = totalExitEnd + 1;
pilots.removeElementAt(i);
NUMAGENTS = NUMAGENTS - 1;
randomize();

}
}

agentField.repaint();
stats.repaint();
try
{

Thread.sleep(SLEEP);
}
catch(InterruptedException e)
{
}

}
} // end the indefinite duration algorithm

} // end run() method

// this method randomizes the neighbors of each pilot
// it is used to add some randomness into the process

public void randomized
{

int n;

// loop through all the pilots in the array
for (int k=0;k<NUMAGENTS;k++)

(
Agent cur = (Agent) pilots.elementAt(k);
// loop through all of cur's neighbors
for (int j=0;j<cur.numNbors;j++)
{

n = (int) (Math.random()*NUMAGENTS) ;
cur.neighbors[j] = (Agent) pilots.elementAt(n); // set cur's current neighbor to be this

// randomly picked pilot

}
}

} // end randomize() method

} // end class PilotRetention

// this class defines the PlayingField as an extension of Canvas
// it then sets up the PlayingField's paint method

class PlayingField extends Canvas
{

// constructor

public PlayingField(}
{

resize(400,325) ;
setBackground(Color.black);
setForeground(Color.white);

} // end PlayingField constructor

public void paint(Graphics g)
{

Agent pilot;

// draw the caption
g.setColor(Color.yellow);
g.drawString("2Lt's - Yellow",5,318);
g.setColor(Color.orange);
g.drawStringC'lLt's - Orange",80, 318);
g.setColor(Color.green);
g.drawString("Capt's - Green",165,318);
g.setColor(Color.blue);
g.drawstring("Maj's - Blue",250,318);
g.setColor(Color.red);
g.drawStringC'LtCol's - Red", 320, 318) ;

// loop through each of the agents in the array pilots
// get that pilot's neighbors
// process that pilot to get his updated parameters
// draw that pilot on the PlayingField

115

for (int i=0;i<PilotRetention.NUMAGENTS;i++)
{

pilot = (Agent) PilotRetention.pilots.elementAt(i); // set pilot equal to the current agent in pilots
pilot.GetNeighbors(); // get the pilot's neighbors
pilot.UpdateFitness(); // update the pilot's fitness function
pilot.ProcessAgent{); // process the pilot to get his updated parameters
pilot.Draw(g); // draw the pilot on the PlayingField

>
} // end paint(Graphics g) method

} // end class Playing Field

// this class sets up the caption at the top of the applet

class MainCaption extends Canvas
{

// variables

int indent = PilotRetention.appWdth/2 - 175; // used to "center" the caption

// constructor

public MainCaption()
{

resize(PilotRetention.appWdth,20);
setBackground(Color.white);
setForeground(Color.black);

} // end MainCaption constructor

public void paint(Graphics g)
{

Font fontdef = new Font("Dialog", Font.BOLD, 15);
g.setFont(fontdef);
g.drawStringC'Pilot Inventory Complex Adaptive System (PICAS)",indent,15);

} // end paint(Graphics g) method

} // end class MainCaption

116

B.2. Agent Class

// Capt Marty Gaupp's Air Force Institute of Technology Thesis Project
//
// last revised on 25 Feb 1999
//
// class to define and process Agents

import java.awt.*;

public class Agent
{

// class wide variables

int IDnum;
Color agentColor;
double YOS;
boolean exit;

int sepCount;

int xPos;
int yPos;
int xTail;
int yTail;
double xSpeed;
double ySpeed;
int canvasHt;
int canvasWt;
int numNbors;

int revrsdist;

Agent neighbors!];
double accel;
double accelToMid;

double accelToSep;
double accelToRet;
double maxSpeed;
double bounceSpeed;
double initialSpeed;
double fitness;

int sepThresh;

can separate

// the identification number of the agent (its index)
// the agent's color
// the agent's Years Of Service
// determines whether or not the agent should exit the system
// = true if the agent is about to exit
// = false if the agent isn't about to exit
// counts the agent's separation requests
// a separation request is lodged everytime the agent passes
// through the lower-right hand {LRH) quadrant of the playing field
// this is the LRH quarter of the LRH quarter of the playing field
// agent's current X position
// agent's current Y position
// agent's old X position (where the tail ends)
// agent's old Y position {where the tail ends)
// agent's speed in the X direction
// agent's speed in the Y direction
// height of the canvas
// width of the canvas
// number of neighbors to keep track of
// increasing it increases the cohesiveness of the pack
// used to indicate when the agent needs to reverse directions
// this indicates the agent's personal space
// get inside this and you should start moving in the opposite direction
// array of agent's neighbors (which are other agents)
// agent's acceleration in pixels
// agent's acceleration toward the middle of the playing field
// used to adjust the agent's position if he get's too far off center
// agent's acceleration toward the separation zone
// agent's acceleration toward the retention zone
// upper limit for the agent's speed
// speed used to bounce off other agents and canvas boundaries
// used to give instantiated agents their initial speed
// agent's fitness function
// used to determine the happiness and propensity of the agent
// the system's separation threshold
// once this many separation requests have been lodged, the agent

// temporary variables for the fitness calculations

double moneylnput;
double moneyLookUp;
int rhoMoney;
double wtMoney;
double timelnput;
double timeLookUp;
int rhoTime;
double wtTime;

// Agent constructor method for initial random set of agents
// create the agents randomly
// randomly assign them: a position - somewhere in the playing field
// a YOS - uniformly distributed between 0 and 20
// a fitness - 0.5 plus or minus 0.2

public Agent(int agentNumber, int ht, int wdth)

{
// assign each agent it's passed values
IDnum = agentNumber;
canvasHt = ht;
canvasWt = wdth;
exit = false;
sepCount = 0;

// get the values for the static variables from the main PilotRetention applet
numNbors = PilotRetention.NUMNBORS;
revrsdist = PilotRetention.REVRSDIST;
accel = PilotRetention.ACCEL;
accelToMid = PilotRetention.ACCELTOMID;
accelToSep = PilotRetention.ACCELTOSEP;
accelToRet = PilotRetention.ACCELTORET;
maxSpeed = PilotRetention.MAXSPEED;

117

bounceSpeed = PilotRetention.BOUNCESPEED;
initialSpeed = PilotRetention.INITIALSPEED;
sepThresh = PilotRetention.SEPTHRESH;

// give each agent it's individual parameters
// set the agent's initial position and velocity at instantiation

xPos = {int)(wdth*Math.random{));
yPos = {int)(ht*Math.random());
xSpeed = {initialSpeed*Math.random());
ySpeed = {initialSpeed*Math.random());

// assign a random YOS and color the agent accordingly
YOS = (int){20*Math.random());
if (YOS < 2) agentColor = Color.yellow;
if ((YOS >=2) && (YOS < 4)) agentColor = Color.orange;
if ((YOS >=4) && (YOS < 12)) agentColor = Color.green;
if ((YOS >=12) && (YOS < 16)) agentColor = Color.blue;
if ((YOS >=16) && (YOS < 20)) agentColor = Color.red;

// give each agent a fitness value
fitness = 0.3 + (0.4*Math.random());

xTail = xPos;
yTail - yPos;
neighbors = new Agent[numNbors];

} // end Agent constructor initial random set of agents

// Agent constructor method for new agent with 0 YOS

public Agent(int agentNumber, int ht, int wdth, int years)
{

// assign each agent it's passed values
IDnum = agentNumber;
canvasHt = ht;
canvasWt = wdth;
YOS = years;
exit = false;
sepCount = 0;

// get the values for the static variables from the main PilotRetention applet
numNbors = PilotRetention.NUMNBORS;
revrsdist = PilotRetention.REVRSDIST;
accel = PilotRetention.ACCEL;
accelToMid = PilotRetention.ACCELTOMID;
accelToSep = PilotRetention.ACCELTOSEP;
accelToRet = PilotRetention.ACCELTORET;
maxSpeed = PilotRetention.MAXSPEED;
bounceSpeed = PilotRetention.BOUNCESPEED;
initialSpeed = PilotRetention.INITIALSPEED;
sepThresh = PilotRetention.SEPTHRESH;

// give each agent it's individual parameters
// set the agent's initial position and velocity at instantiation

xPos = (int)(wdth*Math.random());
yPos = (int)(ht*Math.random());
xSpeed = {initialSpeed*Math.random());
ySpeed = {initialSpeed*Math.random());

// set up the agent's color depending on YOS
if (YOS < 2) agentColor = Color.yellow;
if ((YOS >=2) && (YOS < 4)) agentColor = Color.orange;
if ((YOS >=4) &6 (YOS < 12)) agentColor = Color.green;
if ((YOS >=12) && (YOS < 16)) agentColor = Color.blue;
if ((YOS >=16) && (YOS < 20)) agentColor = Color.red;

xTail = xPos;
yTail = yPos;
neighbors = new Agent[numNbors];

// determine the agent's fitness
// moneylnput = average of hiringValue and paygapValue
// YOS affects money and time wts
// each YOS over 10 adds 0.01 to time and subtracts 0.01 from money
// each YOS under 10 subtracts 0.01 from time and adds 0.01 to money
moneylnput = 0.5*(double)PilotRetention.hiringValue + 0.5*(double)PilotRetention.paygapValue;
timelnput = (double)PilotRetention.opstempoValue;
rhoMoney = PilotRetention.moneyRho;
rhoTime = PilotRetention.timeRho;
wtMoney - PilotRetention.moneyWt+(.01*(10-YOS));

// ensure wtMoney isn't < 0 or > 1
if (wtMoney > 1.0) wtMoney = 1.0;
if (wtMoney < 0.0) wtMoney = 0.0;

wtTime = PilotRetention.timeWt-(.01*(10-YOS));
// ensure wtTime isn't < 0 or > 1
if {wtTime > 1.0) wtTime = 1.0;
if {wtTime < 0.0) wtTime - 0.0;

// get the lookup values using utility curve theory
if (rhoMoney == 0)
{

moneyLookUp = moneylnput/100;

}
if (rhoMoney !=0)

moneyLookUp = (1-Math.exp(-moneylnput/rhoMoney))/{1-Math.exp(-100.0/rhoMoney))

118

if (rhoTime == 0)
{

timeLookUp = timeInput/100;

}
if {rhoTime !=0)
{

timeLookUp = (1-Math.exp(-timelnput/rhoTime))/(1-Math.exp(-100.0/rhoTime));

}
// update the fitness of this agent
fitness = 0.3 + (0.4*Math.random());
double newFitness = wtMoney*moneyLookUp + wtTime*timeLookUp;
double deltaFitness = fitness - newFitness;
if {deltaFitness > 0) fitness = fitness - 0.5*deltaFitness;
if {deltaFitness < 0) fitness = fitness - 0.5*deltaFitness;
if{fitness < 0.0) fitness = 0.0;
if{fitness > 1.0) fitness = 1.0;

// error checking screen prints

} // end Agent constructor for new agent with 0 YOS

// this method calculates the distance between two agents using the distance formula
// the distance between the current agent and the one passed to the method as a parameter is calculated

public int distance(Agent passedAgent)
{

int dist; // the distance calculated in this method
int xDist; // the distance in the x direction
int yDist; // the distance in the y direction
xDist = xPos - passedAgent.xPos;
yDist = yPos - passedAgent.yPos;
dist = xDist*xDist + yDist*yDist;
return (dist);

} // end distance(passedAgent) method

// this method is used to get the numNbors that are nearest to the agent
// the current agents calls this method, therefore it has access to all of its own parameters
// the neighbors are referenced by an indexed array

public void GetNeighbors()

{
Agent currentNbor;

// cycle through the neighbors of the agent that called this method to determine if
// the current neighbors are really the closest agents to, the agent calling this method

for (int i=0;i<numNbors;i++)
t

currentNbor == neighbors [i] ; // these are the agent's current neighbors
for (int j=0;j<numNbors;j++)
{

if (distance(currentNbor.neighbors[j])<distance(currentNbor))
{

// then the current agnet's neighbor's neighbor[j] is closer than the current
// agent's neighborfi], so swap them and have the jth agent (which is closer)
// become the new neighbor
neighbors[i] = currentNbor.neighbors[j];

}
1

}
} // end GetNeighbors() method

// This method updates each agent's fitness
// note the following with respect to these calculations:
// moneylnput = average of hiringValue and paygapValue
// YOS affects money and time wts
// each YOS over 10 adds 0.01 to time and subtracts 0.01 from money
// each YOS under 10 subtracts 0.01 from time and adds 0.01 to money

public void UpdateFitness()
{

double newFitness;
double deltaFitness;
// get some initial values
moneylnput = 0.5*(double)PilotRetention.hiringValue + 0.5*(double)PilotRetention.paygapValue;
timelnput = (double)PilotRetention.opstempoValue;
rhoMoney = PilotRetention.moneyRho;
rhoTime = PilotRetention.timeRho;
wtMoney = PilotRetention.moneyWt+{.01*(10-YOS));

// ensure wtMoney isn't < 0 or > 1
if (wtMoney > 1.0) wtMoney = 1.0;
if (wtMoney < 0.0) wtMoney - 0.0;

wtTime = PilotRetention.timeWt-(.01*(10-YOS));
// ensure wtTime isn't < 0 or > 1
if (wtTime > 1.0) wtTime = 1.0;
if (wtTime < 0.0) wtTime = 0.0;

// get the lookup values using utility curve theory
if (rhoMoney == 0)
{

moneyLookUp = moneyInput/100;
}

119

if (rhoMoney !=0)
{

moneyLookUp = {l-Math.exp{-moneyInput/rhoMoney))/(1-Math.exp{-100.0/rhoMoney));

}
if (rhoTime == 0)
{

timeLookUp = timeInput/100;

>
if (rhoTime !«0)
{

timeLookUp = {l-Math.exp{-time!nput/rhoTime))/(1-Math.exp(-100.0/rhoTime));

}
// update the fitness of this agent
newFitness = wtMoney*moneyLookUp + wtTime*timeLookUp;
deltaFitness - fitness - newFitness;
if (deltaFitness > 0) fitness = fitness - 0.01*deltaFitness;
if (deltaFitness < 0) fitness = fitness - 0.01*deltaFitness;
if(fitness < 0.0) fitness = 0.0;
if(fitness > 1.0) fitness = 1.0;

// error checking screen prints

// end UpdateFitness() method

public void ProcessAgent{)

{
// declare local method variables

int revrs;

int dst;

// set the old position to equal the current position

// used to alter the accel parameter {it acts as a multiplier
// if revrs is positive/ then accel toward something
// if revrs is negative, then accel away from something
// as revrs gets bigger, accel faster
// holds temporary distance values

if (YOS > 20) exit = true;
if ((sepCount > sepThresh)&&(YOS > 8}) exit = true;
xTail = xPos;
yTail = yPos;
revrs = -1;

// use the real algorithm
// cycle through this agent's neighbors to determine how far each neighbor is away from
// the current neighbor and use this information to determine in what direction to travel
// specifically cycle through each neighbor and then update the velocity of the agent
// based on each update {the updates are cumulative)
// this means that there is a possibility of numerous occurances like:
// the two velocity changes could be in the same direction
// the two velocity changes could be in opposite directions
// the two velocity changes could be some combination of the above two

the distance to the ith neighbor

for (int i=0;i<numNbors;i++)
{

dst = distance(neighbors[i]); //
if (dst -- 0)
{

// then the current neighbor is on top of this agent, so don't adjust this agent's
// speed and just let them "pass through" each other
// if revrs were changed to -1 then the agents would congregate in the lower-right corner
// if revrs were changed to +1 then the agents would congregate in the upper-left corner
revrs = 0;

}
else if {dst < revrsdist)
{

// then the current neighbor is in this agent's "personal space"
// therefore the current agent needs to back off by reversing directions
revrs = -1;

else
{

// then this agent is too far away from its neighbor
// so make it head back towards its neighbor
revrs = 1;

// now adjust the velocity in the x and y directions based on the revrs parameter
if (xPos<neighbors[i].xPos)
{

// then move in the positive x direction because the agent's neighbor is in front of it
xSpeed = xSpeed + accel*revrs;

else
{

// move in the negative x direction because the agent's neighbor is behind it
xSpeed = xSpeed - accel*revrs;

}
if (yPos<neighbors[i].yPos)
{

// then move in the positive y direction because the agent's neighbor is in front of it
ySpeed = ySpeed + accel*revrs;

}

120

else
{

// move in the negative y direction because the agent's neighbor is behind it
ySpeed « ySpeed - accel*revrs;

}
} // end for loop

// make sure none of the parameters exceeded their maximum allowable values

// check the speeds
if (xSpeed > maxSpeed) xSpeed = maxSpeed;
if (xSpeed < -maxSpeed) xSpeed = -maxSpeed;
if (ySpeed > maxSpeed) ySpeed = maxSpeed;
if (ySpeed < -maxSpeed) ySpeed = -maxSpeed;

// ensure the agents stay on the canvas
if (xPos < 10) xSpeed = bounceSpeed;

// the agent needs to move in the positive x direction
if (xPos > canvasWt-10) xSpeed = -bounceSpeed;

// the agent needs to move in the negative x direction
if (yPos < 10) ySpeed = bounceSpeed;

// the agent needs to move in the positive y direction
if (yPos > canvasHt-10) ySpeed = -bounceSpeed;

// the agent needs to move in the negative y direction

if(fitness<0.2) // then the agents are ready to get out

}

// pull the agents towards the lower-right hand corner of the screen
// this represents the separation zone
if (xPos > canvasWt/4) xSpeed = xSpeed - accelToSep;

// the agent needs to accelerate to the lower-right hand corner in the x direction
if (yPos < 3*canvasHt/4) ySpeed = ySpeed '+ accelToSep;

// the agent needs to accelerate to the lower-right hand corner in the y direction

// then the agents are undecided and should stay in the middle if((fitness>0.2)&&(fitness<0.8))
{

// keep the agents closer to the center by adjusting their speeds if they get too far out
if (xPos < canvasWt/2) xSpeed = xSpeed + accelToMid;

// the agent needs to accelerate to the middle in the x direction
if (xPos > canvasWt/2) xSpeed = xSpeed - accelToMid;

// the agent needs to accelerate to the middle in the x direction
if (yPos < canvasHt/2) ySpeed = ySpeed + accelToMid;

// the agent needs to accelerate to the middle in the x direction
if (yPos > canvasHt/2) ySpeed = ySpeed - accelToMid;

// the agent needs to accelerate to the middle in the x direction

}

if(fitness>0.8) // then the agents are more willing to commit

// pull the agents towards the upper-left hand corner of the screen
// this represents the retention zone
if (xPos < 3*canvasWt/4) xSpeed = xSpeed + accelToRet;

// the agent needs to accelerate to the upper-left hand corner in the x direction
if {yPos > canvasHt/4) ySpeed = ySpeed - accelToSep;

// the agent needs to accelerate to the upper-left hand corner in the y direction

/ give the agents a kick if they are hanging out by the walls
f (xPos < 20) xSpeed = xSpeed + bounceSpeed/4;

// the agent needs to move in the positive x direction
if (xPos > canvasWt-20) xSpeed = xSpeed - bounceSpeed/4;

// the agent needs to move in the negative x direction
if (yPos < 20) ySpeed = ySpeed + bounceSpeed/4;

// the agent needs to move in the positive y direction
if (yPos > canvasHt-20) ySpeed = ySpeed - bounceSpeed/4;

// the agent needs to move in the negative y direction

// actually move the agent by changing its current x and y position
xPos = xTail + (int) xSpeed;
yPos = yTail + (int) ySpeed;

// age each agent
YOS = YOS + .01;
if (YOS < 2) agentColor
if ((YOS >-2) && (YOS <
if ((YOS >«4) SS (YOS <
if ((YOS >=12) && (YOS •
if ((YOS >-16) SS (YOS ■

= Color.yellow;
4)) agentColor = Color.orange;
12)) agentColor = Color.green;

: 16)} agentColor = Color.blue;
: 20)) agentColor = Color.red;

// update the sepCount counter
if ({xPos < canvasWt/4) && {yPos > 3*canvasHt/4)) sepCount = sepCount + 1;

// idea - how about adding back (lowering the sepCount) for being very happy???

} // end ProcessAgent() method

121

public void Draw{Graphics g)
{

// the fillOval(x,y,width,height) method draws an oval tangent to the sides of
// a rectangle that starts at x,y and has the appropriate width and height
// therefore in order to ensure that the tail comes out of the center of the oval
// it was necessary to make the oval start half way from the start of the tail
// and thus ensure that the tail started in the center of the circle

g.setColor(agentColor);
g.fillOval(xPos-2, yPos-2, 4, 4); // draw the new oval
g.drawLine(xTail, yTail, xPos, yPos); // draw the tail

} // end Draw(Graphics g) method

} // end Agent class

122

B.3. SummaryStats Class

// Capt Marty Gaupp's Air Force Institute of Technology Thesis Project
//
// last revised on 25 Feb 1999
//
// this is the summary statistics class used to collect and display summary statistics
// this class displays the summary statistics as the program runs
// it keeps track of the statistics by using a vector which can grow and shrink dynamically
// the problem is, a vector can only hold Objects, not primitive types, so each member in the vector
// is first recreated as a wrapper-class object (of type Integer)
// this is then stored in the vector
// when the data needs to be retrieved, it is retrieved as a wrapper-class object (of type Integer)
// and then re-converted using the intValueO method to a primitive integer type value
// the integers are then stored in an array which is used by drawPolyline to draw the graph

import j ava.awt.*;
import java.util.*;
import java.io.*;

class SummaryStats extends Canvas
{

// class-wide variables

double percentExitMin;
double percentExitMid;
double percentExitEnd;
int prcExitMin;
int prcExitMid;
int prcExitEnd;
int counter =0;
int xcounter = 0;
Vector YExitMin = new Vector()
Vector YExitMid = new Vector{)
Vector YExitEnd = new Vector()
int[] XPts = new int[400];
int[] YxtMin = new int[400];
int[] YxtMid = new int[400];
int[] YxtEnd = new int[400];
int arrayRows = (PilotRetention.LOOPLENGTH/Pi

int arrayCols = (PilotRetention.ITERATIONS*3)

doublet][] outputArray = new double[arrayRows

int rowNumber;
int colNumber;
int Numlter = PilotRetention.ITERATIONS;

// the percent that exited at the minimum time allowable (8 YOS)
// the percent that exited at the middle of their career (14 YOS)
// the percent that exited at the end of their career (20 YOS)
// integer representation of percentExitMin
// integer representation of percentExitMid
// integer representation of percentExitEnd
// counts the number of times the paint() method is called
// counts the number of X points to be drawn
// vector of the Y points for the minimum time allowable
// vector of the Y points for the middle of their career
// vector of the Y points for the end of their career
// array to hold the most recent 400 X plot points
// array to hold the most recent 400 YExitMin plot points
// array to hold the most recent 400 YExitMid plot points
// array to hold the most recent 400 YExitEnd plot points

lotRetention.DELAY);
// the number of rows in the data output array

+3;
// the number of columns in the data output array

[arrayCols];
// array to hold the data for file output
// current row number of the data output array
// current column number of the data output array
// number of iterations per parameter setting

// constructor

public SummaryStats()
{

resize(400,125);
setBackground(Color.black);
setForeground(Color.white);
XPtsfO] = 0;
YxtMin[0] = 105;
YxtMid[0] = 105;
YxtEndEO] = 105;

if (PilotRetention.FILEOUT) // print number of rows and columns in array

System.out.println("number of rows in array = " + arrayRows);
System.out.println("number of columns in array = " + arrayCols);

}

} // end SummaryStats constructor

public void paint(Graphics g)
{

// draw the caption
g.drawStringC'Percent Sep's at:",5,118);
g.setColor(Color.red);
g.drawStringC'min YOS in Red",103,118);
g.setColor(Color.yellow);
g.drawStringC'mid YOS in Yellow",198,118);
g.setColor(Color.green);
g.drawString{"20 YOS in Green",303,118);

counter = counter + 1;
if (PilotRetention.totalNumberExited == 0) percentExitMin = 0.0;
else percentExitMin = 100.0*{(double) PilotRetention.totalExitMin)/((double) PilotRetention.totalNumberExited);
if (PilotRetention.totalNumberExited == 0) percentExitMid = 0.0;
else percentExitMid = 100.0*((double) PilotRetention.totalExitMid)/((double) PilotRetention.totalNumberExited);
if (PilotRetention.totalNumberExited — 0) percentExitEnd = 0.0;
else percentExitEnd = 100.0*((double) PilotRetention.totalExitEnd)/((double) PilotRetention.totalNumberExited);

123

if (counter%PilotRetention.DELAY == 0}
{

xcounter = xcounter + 1;
colNumber = PilotRetention.COL;
if (colNumber<0)
[

colNumber = 0;
System.out.println("***** Had to reset the column number! **+*");

}
rowNumber = PilotRetention.ROW;
if (rowNumber<0)
{

rowNumber = 0;
System.out.println("***** Had to reset the row number! ****");

}
prcExitMin = 105 - (int) percentExitMin;
Integer percentExtMin = new Integer(prcExitMin); // need to use wrapper-classes for vectors
prcExitMid = 105 - (int) percentExitMid;
Integer percentExtMid = new Integer(prcExitMid); // need to use wrapper-classes for vectors
prcExitEnd = 105 - (int) percentExitEnd;
Integer percentExtEnd - new Integer(prcExitEnd); // need to use wrapper-classes for vectors

if (xcounter < 400) // just add an element to the end of the vector

f
// add the element to the end of each vector
YExitMin.addElement(percentExtMin);
YExitMid.addElement(percentExtMid);
YExitEnd.addElement(percentExtEnd);
// copy the data into the corresponding arrays
XPts[xcounter] = xcounter;
Integer curYExitMin = (Integer) YExitMin.elementAt(xcounter-1);
YxtMin[xcounter] = curYExitMin.intValue();
Integer curYExitMid = (Integer) YExitMid.elementAt(xcounter-1);
YxtMid[xcounter] = curYExitMid.intValue();
Integer curYExitEnd = (Integer) YExitEnd.elementAt(xcounter-1);
YxtEnd[xcounterJ = curYExitEnd.intValue();

} // end if for the first 400 observations
else // shuffle the vector one position

{
// remove the first element of each vector
YExitMin.removeElementAt(0);
YExitMid.removeElementAt(0);
YExitEnd.removeElernentAt(0);
// add the new element to the end of each vector
YExitMin.addElement(percentExtMin);
YExitMid.addElement(percentExtMid);
YExitEnd.addElement(percentExtEnd);
// copy the data into their corresponding arrays using a loop
for(int i=0;i<399;i++)
{

Integer curYExitMin = (Integer) YExitMin.elementAt(i);
YxtMin[i] = curYExitMin.intValue();
Integer curYExitMid = (Integer) YExitMid.elementAt(i);
YxtMidti] = curYExitMid.intValue();
Integer curYExitEnd = (Integer) YExitEnd.elementAt(i);
YxtEnd[i] = curYExitEnd.intValue();

}
} // end else to handle vector shuffling
if (PilotRetention.FILEOUT) // output the data to a file

{
// put the original data into the array
outputArray[rowNumber][3*colNumber] = percentExitMin;
outputArray[rowNumber][3*colNumber+l] = percentExitMid;
outputArray[rowNumber][3*colNumber+2] = percentExitEnd;
// calculate the mean if the current column is the last column of data to be collected
iffcolNumber == (Numlter-l))
{

for (int column=0;column<3;column++)
{

double rowTotal = 0.0;
for (int obsNum = 0;obsNum<NumIter;obsNum++)

{
int colPos = column + (obsNum*3);
rowTotal = rowTotal + outputArray[rowNumber][colPos];

}
outputArray[rowNumber][3*colNumber+3+column] = rowTotal/Numlter;

}
} // end calculation of the mean
// print out the data if the current column is the last column of data to be collected
if(colNumber == (Numlter-l))
{

PrintStream statsPS = new PrintStream(PilotRetention.dataOut);
String dataLine = new String(outputArray[rowNumber][0] + "\t" +

outputArray[rowNumber][1] + "\t" +
outputArray[rowNumber][2] + "\t" +
outputArray[rowNumber][3] + "\t" +
outputArraytrowNumber][4] + "\t" +
outputArray[rowNumber][5] + "\t" +
outputArray[rowNumber][6] + "\t" +
outputArray[rowNumber][7] + "\t" +
outputArray[rowNumber][8] + "\t" +
outputArraytrowNumber][9] + "\t" +

124

outputArray[rowNumber][10] + "\t"
outputArray[rowNumber][11] + "\t"
outputArray[rowNumber][12] + "\t"
outputArray[rowNumber][13] + "\t"
outputArray[rowNumber][14] + "\t"
outputArray[rowNumber][15] + "\t"
outputArray[rowNumber][16] + "\t"
outputArray[rowNumber][17]);

statsPS.println(dataLine);
} // end printing out of data

} // end if for file output
PilotRetention.ROW = PilotRetention.ROW +

} // end if for time delay

if (xcounter < 400)
{

g.setColor(Color.red);
g.drawPolyline(XPts, YxtMin, xcounter);
g.setColor(Color.yellow);
g.drawPolyline(XPts, YxtMid, xcounter);
g.setColor(Color.green);
g.drawPolyline(XPts, YxtEnd, xcounter);

}
else
{

g.setColor(Color.red);
g.drawPolyline(XPts, YxtMin, 399)
g.setColor(Color.yellow);
g.drawPolyline(XPts, YxtMid, 399)
g.setColor(Color.green);
g.drawPolyline(XPts, YxtEnd, 399)

}

} // end paint(Graphics g) method

} // end class SummaryStatistics

125

B.4. EnvironmentalControl Class

// Capt Marty Gaupp's Air Force Institute of Technology Thesis Project
//
// last revised on 25 Feb 1999
//
// class to define the environmental controls

import java.awt.*;
import java.awt.event.*;

public class EnvironmentControl extends Panel

{
// class wide variables

public ScrollBarReader hiring;
public ScrollBarReader paygap;
public ScrollBarReader opstempo;
public ScrollBarReader tmwt;
public DummyCanvas spacer;
public int hiringValue;
public int paygapValue;
public int opstempoValue;
public int tmwtValue;

// airline hiring practices control
// perceived pay-gap control
// ops tempo control
// time vs money weighting factor control
// spacer for the sliders
// hiring's value
// pay gap's value
// opstempo's value
// tmwt's Value

// set up the initial values from the main program
public int inithiring = PilotRetention.INITHIRINGVALUE;
public int initpaygap = PilotRetention.INITPAYGAPVALUE;
public int initopstempo = PilotRetention.INITOPSTEMPOVALUE;

// constructor

public EnvironmentControl()
{

setLayout{new GridLayout(0,1,0,-10));
ScrollBarReader hiring = new ScrollBarReader("
ScrollBarReader paygap = new ScrollBarReader("
ScrollBarReader opstempo = new ScrollBarReader('
ScrollBarReader tmwt = new ScrollBarReader("
spacer = new DummyCanvas();
add(hiring);
add(paygap);
add(opstempo);
add(tmwt);
add(spacer);
spacer.repaint();
hiringValue - hiring.scrollValue;
paygapValue = paygap.scrollValue;
opstempoValue = opstempo.scrollValue;
tmwtValue - tmwt.scrollValue;

} // end EnvironmentControl constructor

Airline Job Avail", " low",
Perceived Pay Gap", " low",
Operations Tempo", " low"

Time vs Money", 100, " tm", "$

"high", inithiring, 10, 0,
"high", initpaygap, 10, 0,
"high", initopstempo, 10,

, 50, 10, 0, 100, 1, 5);

100, 1, 5);
100, 1, 5);
0, 100, 1, 5);

public class DummyCanvas extends Canvas
{

// class-wide variables

int vertSize = 1; // vertical size of the box

// constructor

public DummyCanvas()
{

resize(140,vertSize);
setBackground(Color.white);
setForeground(Color.white);

} // end DummyCanvas constructor

} // end class DummyCanvas

public int getHiringValue()
{

hiringValue = hiring.hiringScrollValue;
return 100-hiringValue;

}

public int getPaygapValue()
{

paygapValue = paygap.paygapScrollValue;
return 100-paygapValue;

}

public int getOpstempoValue(}
{

opstempoValue = opstempo.opstempoScrollValue;
return 100-opstempoValue;

}

126

public int getTmwtValue()
{

tmwtValue = tmwt.tmwtScrollValue;
return tmwtValue;

}

} // end class EnvironmentControl

127

B.5. PilotControl Class

// Capt Marty Gaupp's Air Force Institute of Technology Thesis Project
//
// last revised on 25 Feb 1999
//
// class to define pilot controls

import java.awt.*;
import java.awt.event.*;

public class PilotControl extends Panel
{

// class wide variables

public UtilityCurve money;
public UtilityCurve timeoff;
public DummyCanvas spacer;
public int moneyRhoValue;
public int timeRhoValue;
int horSize = 140;

// money's utility curve
// time off's utility curve
// spacer for the sliders
// money's rho value
// time's rho value
// controls horizontal size of everything

// set up the initial values from the main program
public int initmoney = PilotRetention.INITMONEYRHO;
public int inittime = PilotRetention.INITTIMERHO;

// constructor

public PilotControl()
{

setLayout(new GridLayout(0,1,0,10));
UtilityCurve money = new UtilityCurve("money","money",0,100,0,1,100,20,1,10,l,horSize,initmoney);
UtilityCurve timeoff = new UtilityCurve("timeoff","time-off",0,100, 0,1,100, 20,1,10, l,horSize,inittime)
spacer = new DummyCanvas();
add(money);
add(timeoff);
add(spacer);
spacer.repaint();
moneyRhoValue = money.rho;
timeRhoValue = timeoff.rho;

} // end PilotControl constructor

public class DummyCanvas extends Canvas

// class-wide variables

int vertsize = 1;

// constructor

// vertical size of the box

public DummyCanvas()
{

resize(horSize,vertSize);
setBackground(Color.white);
setForeground(Color.white);

} // end DummyCanvas constructor

} // end class DummyCanvas

public int getMoneyRhoValue(}
{

moneyRhoValue = money.moneyRho;
return moneyRhoValue;

}

public int getTimeRhoValue()
{

timeRhoValue = timeoff.timeRho;
return timeRhoValue;

}

} // end class PilotControl

128

B.6. UtilityCurve Class

// Capt Marty Gaupp's Air Force Institiute of Technology Thesis Project
//
// last revised on 25 Feb 1999
//
// this class will create a utility curve with rho controlled by a slider
//
//
//
//
//
//
//

the utility curve's values will range from minY to maxY
the utility curve's x values will range from minX to maxX
the utility curve will be modeled with an exponential curve
rho will be allowed to range from -rhoSize to +rhoSize
for this to really work rhoSize needs to be as big as max{minX,maxX)
the monotonicity of the utility function is controlled by monoton
the size of the utility curve (in pixels) is controlled by size

import java.awt.*;
import java.awt.event.*;

public class UtilityCurve extends Panel implements AdjustmentListener

t
// UtilityCurve class wide variables

public Scrollbar rhoSlider;
public int initialValue;
public int sliderSize;
public int minValue;
public int maxValue;
public int unitSize;
public int blockSize;
public int sliderValue;
public UtilityCanvas utilCurveCanvas;
public int size;
public String curveName;
public String curveTitle;
public int minX;
public int maxX;
public int minY;
public int maxY;
public int negRho;
public int posRho;
public int rho;
public int monoton;

static public int moneyRho;
static public int timeRho;

// slider for rho
// slider's initial value
// slider's size
// slider's minimum value
// slider's maximum value
// slider's unit size
// slider's block size
// current value of the slider
// utility canvas
// the size of the square utility canvas
// utility curve's name
// utility curve's title to be displayed on screen
// minimum value for X axis
// maximum value for X axis
// minimum value for Y axis
// maximum value for Y axis
// biggest negative rho
// biggest positive rho
// rho's value
// utility curve's monotonicity
// < 0 means decreasing
// > 0 means increasing
// current value of money's rho
// current value of time's rho

// these two variables need to be static so that they can be referenced outside of this class

// constructor

public UtilityCurve(String name, String title, int minimumX, int maximumX, int minimumY, int maximumY,
int rhoSize, int slider, int unit, int block, int mono, int sz, int initValue)

f
// set the utility curve's values

curveName = name;
curveTitle = title;
minX = minimumX;
maxX = maximumX;
minY = minimumY;
maxY = maximumY;
negRho = -rhoSize;
posRho = rhoSize;
sliderSize = slider;
unitSize = unit;
blockSize = block;
monoton = mono;
size = sz;
minValue = 0;
maxValue = (posRho - negRho) + sliderSize;
initialValue = 0 - negRho;
sliderValue - initValue - negRho;
rhoSlider = new Scrollbar(Scrollbar.HORIZONTAL, initialValue, sliderSize, minValue, maxValue);
rhoSlider.setUnitIncrement(unitSize);
rhoSlider.setBlocklncrement(blockSize);
rhoSlider.addAdjustmentListener(this);
ConstructCurve();
if (curveName == "money")

moneyRho - rho;
if (curveName == "timeoff")

timeRho = rho;
} // end UtilityCurve constructor

129

public void adjustmentValueChanged(AdjustmentEvent e)

{
sliderValue - e.getValue();
if(monoton<0) // set rho for monotonically decreasing utility curves

if{sliderValue == initialValue)

rho = 0;

else if(sliderValue < initialValue)

rho = -1 - sliderValue;

else if(sliderValue > initialValue)

if(sliderValue <= 2*posRho)

rho = sliderValue - 2*(sliderValue - initialValue) + 1;

else if(sliderValue > 2*posRho)

rho = 1;

}

if(monoton>0) // set rho for monotonically increasing utility curves

if(sliderValue == initialValue)

rho = 0;

else if(sliderValue < initialValue)

rho = sliderValue + 1 ;

else if(sliderValue > initialValue)

if (sliderValue <== 2*posRho)

rho = sliderValue - 2*(initialValue)

else if(sliderValue > 2*posRho)

rho - -1;

}
}
utilCurveCanvas.repaint();
if (curveName == "money")

moneyRho = rho;
if (curveName == "timeoff")

timeRho = rho;

} // end adjustmentValueChanged(AdjustmentEvent e) method

// inner class ConstructCurve for constructing the utility curve

public void ConstructCurve()
{

rho = sliderValue + negRho;
utilCurveCanvas = new UtilityCanvas();
setLayout(new BorderLayout());
add(utilCurveCanvas, BorderLayout.CENTER);
add(rhoSlider, BorderLayout.SOUTH);

} // end ConstructCurve() method

// inner class UtilityCanvas for drawing on the utility curve

public class UtilityCanvas extends Canvas
{

// constructor

public UtilityCanvas{)
{

resize(size,size);
setBackground(Color.white);
setForeground(Color.black);

} // end UtilityCanvas constructor

// set up the canvas
public void paint(Graphics g)
{

// draw box outline
g.drawRect(0,0,size-l,size-l);
g.drawRect(l,l,size-3,size-3);
g.drawRect(2,2,size-5,size-5);
Font fontdef = new Font("Dialog", Font.BOLD, 15);
g.setFont(fontdef);
g.drawstring(curveTitie,25,25);
g.drawStringC'rho = " + rho, 25,50);

130

// set up the plot point array
int ssize = size - 1;
intt] Xpt = new inttssize];
int[] Ypt = new inttssize];
doublet] Xintrmd = new double[ssize];
doublet] Yintrmd = new double[ssize];
double dblrho = (double) rho;
double dblminX = (double) minX;
double dblmaxX =* (double) maxX;
for(int i = 0; i<ssize; i++)

(
if(monoton<0) // monotonically decreasing

(
if(rho == 0) // straight line

(
Xptti] = i;
Yptti] - i;

)
if(rho != 0) // exponential curve

{
Xptti] = i;
Xintrmdti] = (double)i*{(double)((double)(maxX-minX))/ssize);
Yintrmdti] - ssize*((1-Math.exp(-1*(dblmaxX - Xintrmdti])/dblrho))/(1-Math.exp(-1*(dblmaxX-dblminX)/dblrho)));
Yptti] = ssize-(int)Yintrmdti];

)
)
if(monoton>0) // monotonically increasing

I
if(rho == 0) // straight line
(

Xptti] - i;
Yptti] = ssize-i;

)
if(rho != 0) // exponential curve
t

Xptti] = i;
Xintrmdti] = (double)i*((double)((double)(maxX-minX))/ssize);
Yintrmdti] - ssize*((1-Math.exp(-1*(Xintrmdti] - dblminX)/dblrho))/(1-Math.exp(-1*(dblmaxX-dblminX)/dblrho)));
Yptti] = ssize-(int)Yintrmd[i];

>
>

>

// draw the polyline
g.setColor(Color.red);
g.drawPolyline(Xpt, Ypt, Xpt.length);

} // end paint(Graphics g) method

] // end class UtilityCanvas

public double getYvalue(int Xval)
(

int ssize = size-1;
double dblrho = (double) rho;
double dblminX = (double) minX;
double dblmaxX = (double) maxX;
double Xvalue = (double) Xval;
double Yvalue - 0.0;
if(monoton<0)
(

if(rho — 0)
(

Yvalue = (dblmaxX - Xvalue)/(dblmaxX - dblminX);

)
if(rho !- 0)
I

Yvalue - (1-Math.exp(-1*(dblmaxX - Xvalue)/dblrho))/(1-Math.exp(-1*(dblmaxX-dblminX)/dblrho));

>
>
if(monoton>0)
(

if(rho =- 0)
f

Yvalue = (Xvalue - dblminX)/(dblmaxX - dblminX);

)
if(rho !- 0)

Yvalue - (1-Math.exp(-l*(Xvalue - dblminX)/dblrho))/(1-Math.exp(-1*(dblmaxX-dblminX)/dblrho));

>
)
return Yvalue;

} // end getYvalue(int Xval) method

} // end class UtilityCurve

131

B.7. ScrollBarReader Class

// Capt Marty Gaupp's Air Force Institute of Technology Thesis Project
//
// last revised on 25 Feb 1999
//
// this class will display a scroll bar slider with a title and its value {both centered)
// the slider will range from min to max-sliderSize
// to get the slider to span the whole window, use the border layout in the class that calls this class

import j ava.awt.*;
import java.awt.event.*;

public class ScrollBarReader extends Panel implements AdjustmentListener

{
// class variables

public Scrollbar control;
public Label title;
public Label leftTitle;
public Label rightTitle;
public Label value;
public String scrollBarName;
public String leftLabel;
public String rightLabel;
public int percentBase;
public int initialValue;
public int sliderSize;
public int minValue;
public int maxValue;
public int unitSize;
public int blockSize;
public int scrollValue;
static public int hiringScrollValue;
static public int paygapScrollValue;
static public int opstempoScrollValue;
static public int tmwtScrollValue;

// these four variables need to be
public boolean labels;

public boolean percents;

public int leftPercent;
public int rightPercent;

// scroll bar for adjusting values
// label for the scroll bar title
// label for the left extreme of the scroll bar
// label for the right extreme of the scroll bar
// label for the scroll bar value
// name of scroll bar
// label for the left extreme of the scroll bar
// label for the right extreme of the scroll bar
// base of percentage values (generally 100)
// initial value of scroll bar
// slider size for scroll bar
// minimum value of scroll bar
// maximum value of scroll bar
// unit increment of scroll bar
// block increment of scroll bar
// current value of the scroll bar
// current hiring value
// current paygap value
// current opstempo value
// current tmwt value

static so that they can be referenced outside of this class
// boolean variable to determine if there are extrema labels
// = TRUE if there are extrema labels
// = FALSE if there are not extrema labels
// boolean variable to determine if percents are used
// = TRUE if percents are used
// = FALSE if percents are not used
// percent value of the left half of the scroll bar
// percent value of the right half of the scroll bar

// constructor without extra lables

public ScrollBarReader(String name, int initial, int slider, int min, int max, int unit, int block)
{

// set the scrollbar's values

scrollBarName = name;
initialValue = initial;
scrollValue = initial;
sliderSize = slider;
minValue = min;
maxValue = max + slider;
unitSize = unit;
blockSize = block;
labels = false;
percents = false;
if (scrollBarName == "

hiringScrollValue =
if (scrollBarName == "

paygapScrollValue =
if (scrollBarName == "

opstempoScrollValue = scrollValue;
if (scrollBarName == " Time vs Money"

tmwtScrollValue = scrollValue;

Airline Job Avail")
scrollValue;
Perceived Pay Gap")

scrollValue;
Operations Tempo")

// set up the scrollbar

scrollValue = initialValue;
setLayout(new BorderLayout());
control = new Scrollbar(Scrollbar.HORIZONTAL, initialValue, sliderSize, minValue, maxValue);
control.setUnitIncrement(unitSize);
control.setBlocklncrement(blockSize);
control.addAdjustmentListener(this);

// set up the title label

Panel titlePanel = new Panel();
titlePanel.setLayout(new FlowLayout());
title = new Label(scrollBarName);
titlePanel.add(title);

132

// set up the value label

Panel valuePanel = new Panel();
valuePanel.setLayout(new FlowLayout());
value = new Label(" " + scrollValue);
valuePanel.add(value);

// put the title, scrollbar, and value on the panel

add(titlePanel, BorderLayout.NORTH);
add(control, BorderLayout.CENTER);
add(valuePanel, BorderLayout.SOUTH);

} // end ScrollBarReader constructor without extra labels

// constructor with left and right lables

public ScrollBarReader(String name, String left, String right, int initial, int slider,
int min, int max, int unit, int block)

{
// set the scrollbar's values

scrollBarName = name;
leftLabel - left;
rightLabel = right;
initialValue = initial;
scrollValue = initial;
sliderSize = slider;
minValue = min;
maxValue = max + slider;
unitSize = unit;
blockSize = block;
labels = true;
percents = false;
if (scrollBarName == " Airline Job Avail")

hiringScrollValue = scrollValue;
if (scrollBarName == " Perceived Pay Gap")

paygapScrollValue = scrollValue;
if (scrollBarName == " Operations Tempo")

opstempoScrollValue = scrollValue;
if (scrollBarName == " Time vs Money")

tmwtScrollValue = scrollValue;

// set up the scrollbar

scrollValue = initialValue;
setLayout{new BorderLayout());
control = new Scrollbar{Scrollbar.HORIZONTAL, initialValue, sliderSize, minValue, maxValue)
control.setUnitlncrement(unitSize);
control.setBlocklncrement(blockSize);
control.addAdjustmentListener(this);

// set up the title label

Panel titlePanel = new Panel();
titlePanel.setLayout(new FlowLayout());
title = new Label(scrollBarName);
titlePanel.add(title);

// set up the value label

Panel valuePanel = new Panel{);
valuePanel.setLayout{new FlowLayout{));
leftTitle = new Label(leftLabel);
rightTitle - new Label(rightLabel);
value = new Labelf" + scrollValue);
valuePanel.add(leftTitle);
valuePanel.add(value);
valuePanel.add(rightTitle);

// put the title, scrollbar, and value on the panel

addftitlePanel, BorderLayout.NORTH);
add(control, BorderLayout.CENTER);
add{valuePanel, BorderLayout.SOUTH);

} // end ScrollBarReader constructor with left and right labels

// constructor with percents

133

public ScrollBarReader(String name, int base, int initial, int slider, int min, int max, int unit, int block)

{

// set the scrollbar's values

scrollBarName = name;
percentBase = base;
initialValue = initial;
scrollValue = initial;
sliderSize = slider;
minValue = min;
maxValue = max + slider;
unitSize = unit;
blockSize = block;
labels = false;
percents = true;
if (scrollBarName == " Airline Job Avail")

hiringScrollValue = scrollValue;
if (scrollBarName ~~ " Perceived Pay Gap")

paygapScrollValue - scrollValue;
if (scrollBarName == " Operations Tempo")

opstempoScrollValue = scrollValue;
if (scrollBarName == " Time vs Money")

tmwtScrollValue = scrollValue;

// set up the scrollbar

scrollValue = initialValue;
rightPercent = scrollValue;
leftPercent = maxValue - scrollValue - sliderSize;
setLayout(new BorderLayout());
control = new Scrollbar(Scrollbar.HORIZONTAL, initialValue, sliderSize, minValue, maxValue);
control.setUnitlncrement(unitSize);
control.setBlocklncrement(blockSize);
control.addAdjustmentListener(this);

// set up the title label

Panel titlePanel = new Panel();
titlePanel.setLayout(new FlowLayout());
title = new Label(scrollBarName);
titlePanel.add(title);

// set up the value label

Panel valuePanel = new Panel(};
valuePanel.setLayout(new FlowLayout(});
value = new Label(" " + leftPercent + " " + rightPercent);
valuePanel.add(value);

// put the title, scrollbar, and value on the panel

add(titlePanel, BorderLayout.NORTH);
add{control, BorderLayout.CENTER);
addfvaluePanel, BorderLayout.SOUTH);

} // end ScrollBarReader constructor with percents

// constructor with percents and left/right labels

public ScrollBarReader(String name, int base. String left, String right, int initial,
int slider, int min, int max, int unit, int block)

t

// set the scrollbar's values

scrollBarName = name;
percentBase = base;
leftLabel = left;
rightLabel = right;
initialValue = initial;
scrollValue = initial;
sliderSize = slider;
minValue = min;
maxValue = max + slider;
unitSize - unit;
blockSize = block;
labels - true;
percents = true;
if (scrollBarName == " Airline Job Avail")

hiringScrollValue = scrollValue;
if (scrollBarName ~- " Perceived Pay Gap")

paygapScrollValue = scrollValue;
if (scrollBarName == " Operations Tempo")

opstempoScrollValue = scrollValue;
if (scrollBarName == " Time vs Money")

tmwtScrollValue = scrollValue;

134

// set up the scrollbar

scrollValue = initialValue;
rightPercent = scrollValue;
leftPercent - maxValue - scrollValue - sliderSize;
setLayout(new BorderLayout());
control = new Scrollbar(Scrollbar.HORIZONTAL, initialValue, sliderSize, minValue, maxValue)
control.setUnitlncrement(unitSize);
control.setBlocklncrement(blockSize);
control.addAdjustmentListener(this);

// set up the title label

Panel titlePanel = new Panel();
titlePanel.setLayout(new FlowLayout()) ;
title = new Label(scrollBarName);
titlePanel.add(title);

// set up the value label

Panel valuePanel = new Panel();
valuePanel.setLayout(new FlowLayout());
leftTitle = new Label(leftLabel);
rightTitle = new Label(rightLabel);
value = new Label("" + leftPercent + " " + rightPercent);
valuePanel.add(leftTitle);
valuePanel.add(value);
valuePanel.add(rightTitle);

// put the title, scrollbar, and value on the panel

add(titlePanel, BorderLayout.NORTH);
addfcontrol, BorderLayout.CENTER);
add{valuePanel, BorderLayout-SOUTH);

} // end ScrollBarReader constructor with percents and left/right labels

// define the adjustment listener

public void adjustmentValueChanged(AdjustmentEvent e)

f
scrollValue = e.getValue();
if (scrollBarName == " Airline Job Avail")

hiringScrollValue = scrollValue;
if (scrollBarName == " Perceived Pay Gap")

paygapScrollValue = scrollValue;
if (scrollBarName == " Operations Tempo")

opstempoScrollValue = scrollValue;
if (scrollBarName -- " Time vs Money")

tmwtScrollValue = scrollValue;
if ((labels ££ Ipercents)

value.setText (" " + scrollValue);
if (labels S& Ipercents) value.setText("" + scrollValue);
if (percents && !labels)
{

rightPercent = scrollValue;
leftPercent = maxValue - scrollValue - sliderSize;
value.setText(" " + leftPercent + " " + rightPercent);

}
if (percents && labels)
{

rightPercent = scrollValue;
leftPercent = maxValue - scrollValue - sliderSize;
value.setText("" + leftPercent + " " + rightPercent);

}
} // end adjustmentValueChanged(AdjustmentEvent e) method

} // end class ScrollBarReader

135

B.8. HTML Web Page Code

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<!—last modified on Tuesday, November 03, 1998 03:35 PM —>
<HTML>

<HEAD>
<META HTTP-EQUIV«"Content-Type" CONTENT«"text/html;CHARSET«iso-8859-l">
<META NAME="GENERATOR" Content«"Visual Page 1.1a for Windows">
<META NAME="Author" Content="Marty Gaupp">
<TITLE>Capt Marty Gaupp's Thesis Project </TITLE>

</HEAD>

<BODY>

<H1 ALIGN="CENTER">Capt Marty Gaupp's Thesis Pro]ect</Hl>
<CENTER>
<PXAPPLET CODE-"PilotRetention.class" WIDTH-"700" HEIGHT="515" ALIGN="BOTTOM">
</APPLET>
</P>

<PXA HREF="mailto:mgaupp@afit.af .mil">e-mail Capt Gaupp
</CENTER>

</BODY>

</HTML>

136

APPENDIX C - ANNOTATED BIBLIOGRAPHY

Bankes, Steven C. "On the Edge: Statistics and Computing". Chance. Winter
1994. pp. 50-51, 57.

In this article, Banks explains that the process of exploratory modeling involves
comparing the results of alternative simulation models to available data. He shows
that the goal of exploration is not to build a model that is the best fit for the data, but
rather to better understand how the available data constrains the plausibility of
alternative models. After having specified an ensemble of possible modeling
experiments, any specific modeling experiment can be then thought of as a sample
from this ensemble. The strategy for sampling from an ensemble of computational
experiments must be driven by the question being asked. What is generally called for
is not the best estimate model, but the model whose results give the best leverage in
reaching a decision. The idea is to establish a threshold goodness of fit such that any
model performing that well or better would be considered "interesting". It then
becomes reasonable to ask for the distribution of models that perform within that
threshold.

Bankes, Steven C. "Exploratory Modeling for Policy Analysis". Operations
Research. May-June 1993. pp. 435-449.

In this article Banks defines and describes consolidative and exploratory modeling
approaches. Consolidative modeling builds a model by consolidating known facts
into a single predictive package. Exploratory modeling uses a series of experiments
to explore the implications of varying assumptions and hypotheses regarding a
system. Banks then describes how exploratory modeling can be used to gain insight
into systems where little information is available for consolidative model building.
The process of conducting an exploratory modeling approach is insightful in itself,
the goal being to create an ensemble of models from which to pull specific cases that
answer "what-if' questions.

Bankes, Steven C. and James Gillogly. "Exploratory Modeling - Search Through
Spaces of Computational Experiments". Proceedings of the Third Annual
Conference on Evolutionary Programming, eds. Anthony V. Sebald and
Lawrence J. Fogel. River Edge, New Jersey: World Scientific Publishing Co.,
1994. pp. 353-360.

This article shows that when analyzing complex and uncertain problems, computer
models are used not to predict outcomes, but rather to explore spaces of possible
outcomes, search for models with desired characteristics, or to support human
reasoning via computation of the implications of alternative assumptions. Banks and
Gillogly describe how exploratory modeling can be understood as searching or
sampling over an ensemble of models that are plausible given a priori knowledge.

137

They claim that exploratory modeling strategy can be represented as an ensemble of
possible computational experiments and a strategy for selecting individual
experiments from that ensemble.

Bankes, Steven C. and James Gillogly. "Validation of Exploratory Modeling".
Proceedings of the Conference on High Performance Computing 1994. eds.
Adrian M. Tentner and Rick L. Stevens. San Diego, CA: The Society for
Computer Simulation, 1994. pp. 382-387.

In this article Banks and Gillogly show how exploratory modeling is primarily useful
for situations where insufficient information exists to build a truthful model of the
system of interest. They point out that the problem of how to cleverly select the finite
sample of models and cases to examine from the infinite set of possibilities is the
central problem of exploratory modeling methodology. Thus, in exploratory
modeling, rather than validate models, one must validate research strategies. This
validation centers on three aspects of the analysis:

1. the specification of an ensemble of models that will be the basis for exploration;
2. the strategy for sampling from this ensemble;
3. the logic used to connect experimental results to study conclusions.

Beyerchen, Alan. "Clausewitz, Nonlinearity, and the Unpredictability of War".
International Security. Winter 1992/1993. pp. 59-90.

In this article, Beyerchen explains how Clausewitz's On War is suffused with the
understanding that every war is inherently a nonlinear phenomenon, the conduct of
which changes its character in ways that cannot be analytically predicted. He shows
that due to these nonlinearities, our ability to predict the course and outcome of any
given conflict is severely limited. Clausewitz points out that unpredictability from
chance comes in three guises:

1. statistically random phenomenon;
2. the amplification of a microcause;
3. a function of our analytical blindness.

Beyerchen shows that Clausewitz knew about nonlinearity and chaos, but that he just
didn't have the vocabulary available to explain it.

Boehm, Barry W. "A Spiral Model of Software Development and Enhancement".
Computer. May 1988. pp 61 - 72.

In this article, Boehm describes the spiral model of software development, which
includes the following 4 cyclic steps:

1. determine objectives, alternatives, and constraints;
2. evaluate alternatives, identify risks, and resolve risks;
3. develop and verify next-level product;
4. plan the next phase.

138

He shows that each of the above steps is carried out in a cyclic fashion until the
finished product is arrived at (or never if the finished product is to be continuously
updated to fit the user's ever changing needs).

Caryl, Matthew. "Swarm". Swarm Java Applet. World Wide Web,
http://www.catachan.demon.co.uk/Alife/swarm.html. 20 August 1998.

Caryl is the author of a Java applet called "swarm". This applet mimics the swarming
and flocking behavior of various creatures found in nature. He has included an
excellent user interface that takes into account each agent's sphere of observation and
allows the user to alter characteristics based on proximity to other agents. The
controls provided also allow the user to create either insect-like swarming behavior,
bird-like flocking behavior, as well as many other possibilities in between. Overall,
this is an excellent applet well worth a look.

Callander, Bruce D. "The Views of the Force". Air Force Magazine. August 1998.
pp 59 - 63.

This article provides statistics on the latest poll conducted by the Chief of Staff and
finds that a great many Air Force members are thinking about leaving the service.

Casti, John L. Complexification - Explaining a Paradoxical World Through the
Science of Surprise. New York, NY: HarperCollins, 1994.

In this book, Casti goes over the various notions of "complexifying" simple behavior
into complex systems. Although the book does provide some good information, it
takes many tangents and explores lots of trivial ideas. The book, however, does
provide some interesting asides and insights and has a great annotated bibliography in
the back under the "To Dig Deeper" section.

Deitel, H. M. and P. J. Deitel. Java: How to Program. Upper Saddle River, NJ:
Prentice Hall, 1998.

This text on Java by Deitel and Deitel is an excellent introduction to the Java
language. Covering JDK 1.1 (Java Development Kit), this book provides hundreds of
source code examples and pages of excellent instruction. Included with the book is a
CD-ROM containing all the source code presented in the book as well as eight hours
of multimedia instruction. The index is also very helpful in locating specific key
words and Java specific reserved words. Overall, this is an excellent introductory text
for the Java language.

139

Dolan, Ariel. "Artificial Life on the Web, Java Alife Experiments and Artist 3D
Dolls". Floys and Artificial Life Web Site. World Wide Web,
http://www.aridolan.com/. 20 August 1998.

Dolan is the author of several Java applets employing Craig Reynolds ideas about
boids. Calling his creations "floys", each applet increases in complexity from a
simple observation oriented complex adaptive system to a dynamic user controllable
genetic algorithm based evolutionary floys applet. Each applet's source code is
provided, although documentation is very limited. The graphics employed are simple
yet excellent and the algorithms used in the source code are quite enlightening. This
applet was used extensively in the creation of the model presented in this thesis effort.
The algorithms used for controlling the complex adaptive behavior of the agents in
the floys was used as a template for the complex adaptive behavior of the agents in
the model presented in this thesis.

Durham, Maj Susan E. Chaos Theory for the Practical Military Mind. Air
Command and Staff College 97-03.

In this article, Durham defines chaos and describes the various characteristics of a
chaotic system:

determinism;
nonlinear;
sensitivity to initial conditions;
bounded by strange attractors.

She describes chaos theory's relevance to the military mind at length and provides
many examples to back up her findings. The glossary of terms at the end of the paper
is excellent and makes the entire paper much easier to understand.

Gleick, James. Chaos - Making a New Science. New York, NY: Viking Penguin,
Inc., 1987.

This book gives an excellent history of the development of chaos theory. Starting
with Edward Lorenz and the Butterfly Effect, Gleick works in information about the
fractal nature of chaotic systems, examines the universal applications of chaos theory,
and shows how there is order in chaos and chaos in order. He ends with an
examination of the uses of chaos in modern day science including the hard sciences
(physics, math, biology, and chemistry) and the soft sciences (physiology,
psychology, and other social sciences). Overall this is an easy, interesting read and
provides an outstanding account of the history and development of the new science of
chaos theory.

140

the dependability of plans and expectations;
the purpose and values of combat analysis.

He claims that the essential and axiomatic property of combat is not that it is
stochastic but that it is suffused with uncertainty. Because combat comprises both
random and deterministic phenomena, perspective determines how much weight to
place on each. A good description and understanding come before prediction.
Therefore, Hughes explains, if predictive power is the aim, the reduction of risk is a
reasonable goal, not the elimination of uncertainty.

Ilachinski, Andrew. Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An
Artificial-Life Approach to Land Warfare. Alexandria, VA: Center for Naval
Analysis, August 1997.

In this paper, Illachinski describes the generally properties of complex adaptive
systems and how they apply to combat systems:

nonlinear interaction - can't be "linearlized";
nonreductionist - simple interactions result in complex behavior;
emergent behavior - global patterns emerge from local interactions;
hierarchical structure - agents follow a hierarchy of instructions from the bottom-up;
decentralized control - each agent is autonomous;
self-organization - local chaos induces global order;
nonequilibrium order - there is no "end state";
adaptation - agents adapt to the changing environment;
collective dynamics - collectively the entire chaotic system creates order.

He presents the ISAAC model and gives several examples of how it works in
simulating the complex behavior of marine fighting units.

James, Maj Glenn E. Chaos Theory - The Essentials for Military Applications.
Naval War College: Newport Paper Number Ten, October 1996.

In this paper, James describes the necessary and sufficient conditions for a system to
be considered chaotic:

bounded;
nonlinear;
non-periodic;
sensitive to small disturbances;
mixing.

He expounds on the various occurrences of chaos in military systems and shows how
chaos can be used to one's advantage. At the end of his text, he provides an
annotated bibliography which reviews several excellent books about chaos theory.

142

Holland, John H. Emergence - From Chaos to Order. Reading, MA: Addison-
Wesley Publishing Company, Inc., 1998.

Holland's latest work expands on his earlier book Hidden Order. A bit esoteric, he
seems to go off on too many tangents to make much sense throughout the theme of
the book. The beginning and very end of the book are informative, the middle
(chapters 3 through 11), however, goes off on too many tangents. Holland's prior
book, Hidden Order, seems to not benefit too greatly from the information presented
here.

Holland, John H. Hidden Order - How Adaptation Builds Complexity. Reading,
MA: Addison-Wesley Publishing Company, Inc., 1995.

This book is an introduction to the concept of complex adaptive systems. In it,
Holland defines the basic properties of complex adaptive systems:

aggregation - uses categories to establish equivalence;
nonlinearity - the whole is more than the sum of the parts;
flows - results in a multiplier effect and a recycling effect;
diversity - each agent fills a niche.

He also explains the basic mechanisms of complex adaptive systems:
tags - used in aggregation and boundary formation;
internal models - mechanisms for anticipation;
building blocks - impose regularity by allowing agents to evolve and adapt.

At the end of the book, he presents ECHO, a model of a complex adaptive system
based on cellular schema and the properties and mechanisms explained above. This
is an excellent introduction to complex adaptive systems theory and allows the reader
to gain a good foothold into this new science.

Horton, Ivor. Beginning Java. Birmingham, United Kingdom: Wrox Press, 1997.

This is an outstanding introductory and instructive text for use in learning the Java
language. Horton takes great care in explaining all the peculiarities of the Java
language and using this book requires only a very limited knowledge of computer
programming. There are countless examples provided, and throughout the chapters,
the same examples are used over and over again as a means to show how better
coding schemes can improve old programs and add a degree of finesse. Overall this
is a great book to read in order to learn the Java language (JDK 1.1).

Hughes, Wayne P. "Uncertainty in Combat". Military Operations Research.
Summer 1994. pp. 45-57.

In this article, Hughes shows that uncertainty in combat is a very big subject,
pervading nearly every aspect of combat theory, including:

the setting in which command decisions are made;
the effectiveness of decision implementation;

141

Kauffman, Stuart. At Home in the Universe. New York: Oxford University Press,
1995.

This book examines the science of complexity from a biology viewpoint. Evolution
is discussed at length and many suggestions are given as to how life on Earth arose
from the big bang. The end of the book exposes the reader to the notions of social
and economic evolution and presents examples that help explain some of today's
social and economic phenomena. Overall, this is a great look at the biological
ramifications of complexity, however, aside from that, there is not too much new
information presented here that isn't covered in a chapter of Gleick's Chaos.

Levy, Steven. Artificial Life - A Report from the Frontier Where Computers Meet
Biology. New York: Vintage Books, 1992.

In this book, Levy covers the history and development of the science of artificial life.
He starts with Conway's Game of Life and goes to modern robotics and computer
viruses. In the midst of all this he includes lots of discussion on the definition of life
and describes the philosophical dilemma of the entire artificial life phenomena.
Overall, this is a great book about the development of the science of artificial life and
presents the reader with dozens of concrete examples of artificial life. It also
encourages the reader to formulate his own definition of life and use it to further
investigate the implications of artificial life.

McDonald, John W. "Exploiting Battlespace Transparency: Operating Inside an
Opponent's Decision Cycle". War in the Information Age, eds. Robert L.
Pfaltzgraff Jr. and Richard H. Shultz Jr. pp. 143-168.

This article describes the implications of chaos theory with regards to information
obtained from the battlespace. It covers the OODA (Observe-Orient-Decide-Act)
loop and how chaos theory can be used to better understand and exploit it.

Nicholls, Maj David and Maj Todor D. Tagarev. "What Does Chaos Theory Mean
for Warfare". Airpower Journal. Fall 1994. pp. 48-57.

This article describes the implications of the presence of chaos in warfare in the
computer simulation process. It shows how chaos theory can be used to define the
minimum number of variables required to create a model. The fractal nature of
chaotic systems may allow relatively small and simple war games to accurately
simulate warfare. Added to this, sensitivity to initial conditions can help define a
predictive confidence. If small changes produce small variations in the system, then
predictions can be counted on more. However, if small changes produce large
variations in the system, then predictions are to be suspect. By using the model to
alter initial conditions, we can identify centers of gravity in the enemy's system.
Nicholls also expands on the sources of nonlinearity in warfare including:

feedback loops;

143

the psychology associated with interpreting enemy actions;
the number of processes within warfare that appear inherently nonlinear;
Clausewitzian friction;
the process of decision making itself.

As an example of chaos theory at work, he introduces the use of fractals in image
compression and map-making in the battlezone.

Reynolds, Craig. "Boids (Flocks, Herds, and Schools: a Distributed Behavioral
Model)". Boids Web Site. World Wide Web, http://hmt.com/cwr/boids.html. 20
August 1998.

This is an excellent web page presenting lots of background information about Craig
Reynolds and his "boids" project. The information presented includes a working
applet of Reynold's boids and allows the user to experience first-hand the wonders of
bird-like flocking behavior on the computer.

Simon, Herbert A. "Prediction and Prescription in Systems Modeling". Operations
Research. January-February 1990. pp. 7-14.

This article describes the difference between prediction and prescription. With
regards to prediction, a great deal of the power of engineering analyses, and their
computational feasibility, resides in the fact that we do not have to track dynamic
paths in detail, but only discover the stable and unstable equilibria of the system. If
we change the questions that we seek to answer in our modeling, then it is also
probable that we will want to change the models and our methods of analyzing them.
With regards to prescriptive models, we seek to predict events we cannot control in
order to adapt to them better. Simon shows that intelligent approximation, not brute
force computation, is still the key to effective modeling and that prescription is
planning for the future. Our practical concern in planning for the future is what we
must do now to bring that future about. He claims that we must use our future goals
to detect what may be irreversible present actions that must be avoided, and to
disclose gaps in our knowledge that must be closed soon so that choices may be made
later. Our decisions today require us to know our goals, but not the exact path along
which we will reach them.

Vanderwal, Rich. "It's Alive - Boids of a Feather". Boids Web Site. World Wide
Web, http://www.discovery.eom/area/science/life/lifel.3.html. 20 August 1998.

This web site is a great introduction to Craig Reynold's flocking creation called
"boids". Lots of information is given about the theory behind the boids' behavior as
well as links to many other sites about Craig Reynolds.

144

Vulliamy, Alex. "Alex Vulliamy's HomePage". Flies Web Site. World Wide Web,
http://www.vulliamy.demon.co.uk/alex.html. 20 August 1998.

Vulliamy's applet is a great introduction to the algorithms involved in simulating
insect-like swarming behavior. Short and well documented, the source code is readily
available and quite easy to understand. This site is an excellent place to go for
information about how to code complex adaptive systems behavior in Java.

Waldrop, M Mitchell. Complexity, the Emerging Science at the Edge of Order and
Chaos. New York, NY: Touchstone, 1992.

This book covers the history of the science of complexity as it was formed at the
Santa Fe Institute. Waldrop provides lots of great quotes about the science of
complexity and includes tons of first-hand accounts by the founders of complex
adaptive systems theory themselves. Painstakingly researched, Waldrop presents
information regarding evolution, artificial life, and the economic applications of
complex adaptive systems theory. Overall, this book is an excellent introduction to
the science of complexity and its development over the past few decades.

Wright, Chris. Teach Yourself Java. London: Hodder Headline Pic, 1998.

This text is a great introduction to the Java language. Aimed at supplementing an
already pre-existing Java knowledge base, this book helps by providing simple source
code examples of various Java tasks. Among the topics covered in depth are graphics
and animation, with particular attention to how Java handles the presentation of
various forms of graphics. Overall, this book is a great supplement to any other more
in depth Java resource, however, by itself it is a bit limited in scope.

145

BIBLIOGRAPHY

Beyerchen, Alan. "Clausewitz, Nonlinearity, and the Unpredictability of War".
International Security. Winter 1992/1993. pp. 59-90.

Casti, John L. Complexification - Explaining a Paradoxical World Through the Science
of Surprise. New York NY: HarperCollins, 1994.

Clemen, Robert T. Making Hard Decisions: An Introduction to Decision Analysis, 2nd

Edition. Belmont California: Duxbury Press at Wadsworth Publishing Company,
1996.

Dolan, Ariel. "Artificial Life on the Web, Java Alife Experiments and Artist 3D Dolls".
Floys and Artificial Life Web Site. World Wide Web, http://www.aridolan.com/. 20
August 1998.

Durham, Maj Susan E. Chaos Theory for the Practical Military Mind. Air Command
and Staff College 97-03. Maxwell AFB Montgomery AL.

Gleick, James. Chaos - Making a New Science. New York NY: Viking Penguin, Inc,
1987.

Holland, John H. Emergence - From Chaos to Order. Reading MA: Addison-Wesley
Publishing Company, Inc., 1998.

Holland, John H. Hidden Order - How Adaptation Builds Complexity. Reading MA:
Addison-Wesley Publishing Company, Inc., 1995.

Hughes, Wayne P. "Uncertainty in Combat". Military Operations Research. Summer
1994. pp. 45-57.

Ilachinski, Andrew. Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An
Artificial-Life Approach to Land Warfare. Alexandria VA: Center for Naval
Analysis, August 1997.

James, Maj Glenn E. Chaos Theory - The Essentials for Military Applications. Naval
War College: Newport Paper Number Ten, October 1996.

Kauffman, Stuart. At Home in the Universe. New York: Oxford University Press, 1995.

Kirkwood, Craig W. Strategic Decision Making: Multiobiective Decision Analysis with
Spreadsheets. Belmont California: Duxbury Press at Wadsworth Publishing
Company, 1997.

146

Levy, Steven. Artificial Life - A Report from the Frontier Where Computers Meet
Biology. New York: Vintage Books, 1992.

McDonald, John W. "Exploiting Battlespace Transparency: Operating Inside an
Opponent's Decision Cycle". War in the Information Age: New Challenges For U.S.
Security Policy, eds. Robert L. Pfaltzgraff Jr. and Richard H. Shultz Jr. International
Security Studies Program, 1997. pp. 143-168.

Nicholls, Maj David and Maj Todor D. Tagarev. "What Does Chaos Theory Mean for
Warfare". Airpower Journal. Fall 1994. pp. 48-57.

Reynolds, Craig. "Boids (Flocks, Herds, and Schools: a Distributed Behavioral Model)".
Boids Web Site. World Wide Web, http://hmt.com/cwr/boids.html. 20 August 1998.

Waldrop, M Mitchell. Complexity, the Emerging Science at the Edge of Order and
Chaos. New York NY: Touchstone, 1992.

147

VITA

Captain Martin P. Gaupp was born on 2 February 1972 in Summit, New Jersey.

He graduated from Watchung Hills Regional High School in 1990 and entered the United

States Air Force Academy in Colorado Springs, Colorado that summer. In June of 1994

he graduated with a bachelor of science degree in Economics and Operations Research.

On 1 June 1994 he received his commission as an officer in the United States Air Force.

In the spring of 1995 he entered the business program at Saint Martins College in

Olympia, Washington, where he graduated with a Masters in Business Administration in

May of 1997.

Capt Gaupp's first assignment was to McChord AFB in Tacoma, Washington. At

McChord he worked in the 62d Contracting Squadron as a base contracting officer,

negotiating and administrating construction and service contracts for McChord AFB. In

August of 1997 he entered the School of Engineering at the Air Force Institute of

Technology, Wright-Patterson AFB, Dayton, Ohio. There he pursued a Masters of

Science in Operations Research.

Permanent Address: 19 Hunters Trail
Warren, NJ 07059

148

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

March 1999

3. REPORT TYPE AND DATES COVERED

Master's Thesis
4. TITLE AND SUBTITLE

PILOT INVENTORY COMPLEX ADAPTIVE SYSTEM (PICAS): AN
ARTIFICIAL LIFE APPROACH TO MANAGING PILOT RETENTION

6. AUTHOR(S)

Martin P. Gaupp, Captain, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology
2950 P Street
WPAFB OH 45433-7765

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Maj Craig J. Willits
Air Force Personnel Operations Agency (AFPOA)
1235 Jefferson Davis Highway, Suite 301
Arlington VA 22202

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GOR/ENS/99M-06

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT /Maximum 200 words)
The retention of skilled pilots continues plague the U.S. Air Force. After spending millions of dollars on training and
education, the mass exodus of experienced aviators from the Air Force over the past decade is disheartening. Many blame
the economy, others the Air Force itself, but few are able to accurately predict how or why they are all leaving. The current
personnel models do not adequately determine retention rates. Complex adaptive systems theory, however, might provide
some insight. By modeling the system at the pilot's level, allowing each pilot to be represented as an autonomous,
independent agent continually adapting to its environment and the other agents in it, an alternate model can be built; one that
accounts for the interactions among the pilots, not just their interactions with their environment. PICAS (Pilot Inventory
Complex Adaptive System) is just such a model. In PICAS, pilots 'evolve', for lack of a better word, to a greater fitness
within their environment. In the process the model user can alter the environmental parameters and pilots' attitudes to
determine what kind of scenarios need to be created and maintained in order to ensure that adequate retention rates are
sustained.

14. SUBJECT TERMS
Complex Adaptive Systems (CAS), Artificial Life, Chaos Theory, Pilot Retention, Personnel
Models, Agent-Based Simulation Models

15. NUMBER OF PAGES

158
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

